Современные операционные усилители и компараторы National Semiconductor-II

№ 7’2006
Основанная в 1959 году фирма National Semiconductor прошла огромный путь от изготовления первых дискретных транзисторов до выпуска сложнейших современных микроэлектронных устройств. Одним из приоритетных направлений деятельности фирмы является разработка интегральных операционных усилителей (ОУ) и компараторов, объем производства которых в настоящее время составляет около 1 млрд изделий в год.

Основанная в 1959 году фирма National Semiconductor прошла огромный путь от изготовления первых дискретных транзисторов до выпуска сложнейших современных микроэлектронных устройств. Одним из приоритетных направлений деятельности фирмы является разработка интегральных операционных усилителей (ОУ) и компараторов, объем производства которых в настоящее время составляет около 1 млрд изделий в год.

Впредыдущей статье [1] был рассмотрен ряд операционных усилителей (ОУ) и компараторов National Semiconductor, выпускавшихся в середине 2005 года. За прошедший период номенклатура изделий National Semiconductor, в частности прецизионных операционных усилителей, существенно обновилась. Произошло это в связи с началом производства интегральных микросхем (ИМС) с использованием патентованного технологического процесса VIP50, позволяющего значительно улучшить параметры ОУ и компараторов. Следует отметить, что ценовая политика фирмы осталась прежней — изделия National Semiconductor с параметрами, намного превосходящими аналогичные ИМС других фирм, стоят значительно дешевле.

В отличие от цифровых ИМС, основной проблемой разработчиков которых является повышение степени интеграции и быстродействия при снижении напряжения питания и потребляемой мощности, аналоговые микросхемы, в том числе операционные усилители, более разнообразны, поскольку предназначены для решения широкого круга задач. Например, ИМС для промышленной аппаратуры традиционно имеют напряжение питания 10 В и менее, в то время как микросхемы для стремительно развивающейся автомобильной электроники должны устойчиво функционировать при бортовом питании 12 В и сохранять работоспособность при бросках напряжения до 27 В в широком диапазоне температуры окружающей среды, достигающей +150 °С. Для медицинской техники требуются малошумящие прецизионные многоканальные ОУ с минимальным энергопотреблением в миниатюрных корпусах. Все большие требования по точности, шумам, искажениям и другим параметрам предъявляются и к аналоговым ИМС для бытовой электроники.

В итоге двухлетней работы инженеров National Semiconductor в данном направлении появился технологический процесс производства аналоговых ИМС VIP50, получивший номинацию 2005 EDN Innovation of the Year — «Лучшая инновация 2005 года по версии журнала EDN Magazines». Отметим, что VIP50 не первая революционная технология National Semiconductor, несколько лет назад фирма запатентовала технологический процесс изготовления высокочастотных интегральных комплементарных транзисторов VIP10, позволивший создать серию высокоскоростных ОУ LMH6xxx с токовой обратной связью, обладающих рекордным сочетанием скорости нарастания выходного напряжения и частоты единичного усиления [2].

Известно, что улучшение параметров интегральных транзисторов лимитировано паразитными емкостями и утечками между элементами схемы и подложкой. Процесс VIP50 использует технологию «кремний на изоляторе» — Silicon on Insulator (SOI)—с полной изоляцией элементов углубленным оксидом, ранее не применявшуюся для производства прецизионных аналоговых ИМС. Достоинством процесса VIP50 является и возможность создания на одном кристалле полностью комплементарных биполярных и 0,5 мкм МОП-транзисторов и, как следствие, использование преимуществ БиКМОП-технологии в схемотехнике — создание операционных усилителей с минимальным токопотреблением менее 700 нА, гигантским входным сопротивлением, Rail to Rail входом и выходом (RRIO) и очень малыми шумами, работающими в широком диапазоне напряжений питания от 1,8 до 12 В и более. На рис. 1а и 1б, взятых с сайта фирмы, приведены схематические разрезы n-p-n биполярного транзистора и n-канального МОП-транзистора, изготовленных по технологическому процессу VIP50. Соответственно p-n-p-биполярный и p-канальный МОП-транзистор полностью комплементарны показанным.

Рис. 1. Схематические разрезы интегральных транзисторов изготовленных, по технологическому процессу VIP50 а) биполярного n-p-n-транзистора; б) n-канального МОП-транзистора
Рис. 1. Схематические разрезы интегральных транзисторов изготовленных, по технологическому процессу VIP50 а) биполярного n-p-n-транзистора; б) n-канального МОП-транзистора

Другая особенность процесса VIP50 — применение в ИМС тонкопленочных резисторов с низким температурным коэффициентом и лазерной подгонкой сопротивления с точностью лучше, чем 0,01%, что позволяет создавать интегральные ОУ и другие ИМС с минимальными значениями напряжения смещения и его температурного дрейфа, а также высокостабильным фиксированным или программируемым коэффициентом усиления. Сегодня National Semiconductor предлагает более десяти моделей ОУ и компараторов, выпущенных по технологическому процессу VIP50, их основные параметры при напряжении питания 5 В приведены в таблице. Там же приведены параметры других последних моделей ОУ — малошумящего быстродействующего с низким энергопотреблением LM6211 и ультрапрецизионных с автоматической коррекцией нуля LMV2011 и LMP2011, которые будут рассмотрены в конце статьи.

Таблица. Основные параметры современных ОУ National Semiconductor

Супермикромощный ОУ LPV511 работоспособен в диапазоне питающих напряжений от 2,7 до 12 В и предназначен для работы в устройствах с питанием от солнечных батарей, охранных системах с автономным питанием и другой аппаратуре со сверхнизким энергопотреблением. Номинальное значение потребляемого тока Is даже при температуре 125 °С не превышает 1,5 мкА, соответствующая зависимость Is от напряжения питания и температуры приведена на рис. 2.

Рис. 2. Зависимость потребляемого тока ОУ LPV511 от напряжения питания и температуры
Рис. 2. Зависимость потребляемого тока ОУ LPV511 от напряжения питания и температуры

ОУ LPV511 выдерживает синфазное входное напряжение, равное напряжению питания, и обеспечивает размах выходного напряжения всего на 100 мВ меньше значений напряжения питания (Rail to Rail вход и выход). Скорректирован для любого значения коэффициента вплоть до единичного, обладает сравнительно высоким быстродействием — скорость нарастания выходного напряжения составляет 7,7 В/мкс. По величине напряжения смещения и его температурного дрейфа, а также величинам коэффициента усиления и подавления синфазных сигналов и помех по питанию соответствует прецизионным ОУ. Выпускается в пятивыводном миниатюрном корпусе SC70. Успешно заменяет ОУ MCP6141 и LT1494.

Программируемый ОУ LPV531 с входным каскадом на МОП-транзисторах и Rail to Rail выходом (RRO) предназначен для работы в электронной аппаратуре с автономным питанием, имеющей несколько режимов работы с различным энергопотреблением. Управление параметрами ОУ от микромощного (Low) до сравнительно быстродействующего (Full) с максимальным выходным током 24 мА производится одним внешним резистором, включаемым между выводом ИМС ISEL и общим проводом, при этом отношение величины потребляемого тока к частоте единичного усиления остается постоянным и равно 90 мкА/МГц. ОУ LPV531 выпускается в шестивыводном корпусе TSOT-23.

Серия экономичных (Is = 110 мкА) быстродействующих малошумящих одно-двухчетырехканальных ОУ LMV651/2/4 также ориентирована для применения в портативной аппаратуре с батарейным питанием. При частоте единичного усиления 12 МГц LMV651/2/4 потребляют значительно меньшую мощность, чем аналогичные ОУ других производителей. Отличаются низким значением напряжения смещения и его температурного дрейфа, а также малым коэффициентом нелинейных искажений 0,003% в звуковом диапазоне и низким уровнем шумов, что делает перспективным применение ОУ LMV651/2/4 в аппаратуре высококачественного звуковоспроизведения. Работоспособны в расширенном температурном диапазоне от –40 до +125 °С при напряжении питания от 2,7 до 5 В. Выпускаются в корпусах SC70, SOT-23 и TSSOP.

Сдвоенный малошумящий ОУ LMV716 с малым входным током 0,6 пА, Rail to Rail выходом и большим коэффициентом усиления 130 дБ предназначен для использования в активных фильтрах, каскадах предварительного усиления и в качестве инструментального сравнительно быстродействующего усилителя в соответствующем диапазоне частот. Размах выходного сигнала при напряжении питания 3,3 В достигает 3,29 В. LMV716 выпускается в миниатюрном восьмивыводном корпусе MSOP.

Улучшенный вариант LMV716 — серии одно-двухканальных малошумящих ОУ с малым входным током 0,1 пА LMV791/2 и LMV796/7, работоспособных при однополярном питании напряжением от 1,8 В. Особенность данных ОУ — очень низкий уровень шумов 5,8 нВ/√Гц при гигантском входном сопротивлении, что делает предпочтительным их использование в усилителях сигналов фотодиодов, активных фильтрах высоких порядков, медицинской аппаратуре и других аналогичных устройствах. Для экономии энергии батарей ИМС LMV791/2 имеют входы EN, нулевое напряжение на которых переводит ОУ в спящий режим Shutdown, в котором значение потребляемого тока составляет 140 нА на канал. Выпускаются в миниатюрных пяти-шестивыводных корпусах SOT23 и восьми-десятивыводных MSOP.

Теперь перейдем к описанию последних моделей прецизионных операционных усилителей National Semiconductor серии LMP77хх, также выполненных по технологическому процессу VIP50. Их отличает великолепное сочетание различных параметров — минимальное значение напряжения смещения и его температурного дрейфа, низкий входной ток и уровень шумов, широкая полоса усиливаемых частот и температурный диапазон. Серия одно-двух-четырехканальных ОУ LMP7701/2/4 с Rail to Rail входом и выходом работоспособна при напряжении питания от 2,7 до 12 В. Гарантируется максимальное значение напряжения смещения ±200 мкВ (типовое значение ±40 мкВ) и входного тока 100 пА (типовое значение ±0,2 пА), что позволяет эффективно использовать данные ОУ в качестве усилителей сигналов высокоомных датчиков, в инструментальных усилителях и аналогичной аппаратуре.

Рис. 3. Зависимости для ОУ LMP7711 а)распределение (%) по типовому значению напряжения смещения; б)типовая зависимость уровня шумов от частоты
Рис. 3. Зависимости для ОУ LMP7711 а)распределение (%) по типовому значению напряжения смещения; б)типовая зависимость уровня шумов от частоты

Последние модели прецизионных ОУ, изготовленные по технологическому процессу VIP50 LMP7711/2 и LMP7715/6, имеют еще лучшие параметры, в частности, максимальное значение напряжения смещения у LMP7711 реально не превышает ±100 мкВ (типовое значение 10 мкВ) при температурном дрейфе –1 мкВ/°С, а уровень шумов составляет не более 5,8 нВ/√Гц. Статистическое распределение величины типового напряжения смещения для ОУ LMP7711 при напряжении питания VS = 5 В и зависимость уровня шумов от частоты сигнала при напряжении питания VS = 5,5 В и VS = 2,5 В приведены на рис. 3а и 3б.

Благодаря использованию во входном каскаде ОУ высокотехнологичных МОП-транзисторов, излом зависимости шума 1/f удалось сдвинуть до частоты менее 1 кГц и тем самым значительно расширить частотный диапазон ОУ по минимуму шумов. Отметим, что подобные зависимости характерны для большинства моделей операционных усилителей, изготовленных по технологическому процессу VIP50.

ОУ LMP7711/2 и LMP7715/6 рассчитаны на одно- и двухполярное напряжение питания от 1,8 до 5,5 В и при потребляемом токе 1,15 мА на канал имеют частоту единичного усиления 17 МГц. Особенностью данных ОУ является также очень низкое значение коэффициента нелинейных искажений сигнала 0,001% в звуковом диапазоне. ИМС LMP7711/2 имеют входы EN, нулевое напряжение на которых переводит ОУ в спящий режим Shutdown. Выпускаются в миниатюрных корпусах и успешно заменяют MAX4475 и AD8615.

По технологическому процессу VIP50 выпускается также микромощный интегральный RRIO компаратор LPV7215 с двухтактным выходом. При токе потребления 0,58 мкА время переключения составляет 4,5 мкс. На рис. 4а и 4б соответственно приведены зависимости потребляемого тока IS от напряжения питания и температуры, и времени переключения компаратора tPD от разности входных напряжений. LPV7215 выпускается в миниатюрных пятивыводных корпусах SC-70 и SOT23 и идеально подходит для применения в схемах детекторов нуля, различных генераторов и таймеров в мобильных устройствах, охранных системах и другой аппаратуре с малым энергопотреблением.

Рис. 4. Зависимости для компаратора LPV7215: а) потребляемого тока от напряжения питания и температуры; б) времени переключения от разности входных напряжений
Рис. 4. Зависимости для компаратора LPV7215: а) потребляемого тока от напряжения питания и температуры; б) времени переключения от разности входных напряжений

Малошумящий экономичный широкополосный ОУ LM6211 с напряжением питания от 5 до 24 В и частотой единичного усиления 20 МГц отличается великолепным сочетанием параметров, приближающих его к прецизионным. Особенность LM6211 — небольшая входная емкость 5,5 пФ, что предоставляет возможность использовать данный ОУ в широкополосных усилителях с большим усилением. Позиционируется для применения в активных фильтрах, схемах ФАПЧ, входных каскадах высококачественных усилителей звуковых частот и других аналогичных устройствах. Выпускается в пятивыводном миниатюрном корпусе SOT-23.

Заслуживает внимания одно из последних достижений National Semiconductor — серия ультрапрецизионных одно-двух-четырехканальных операционных усилителей с автоматической коррекцией нуля LMV2011/2/4 и их последующие модификации LMP2011/2/4, работоспособные в расширенном температурном диапазоне от –40 до +125 °C. Типичное значение напряжения смещения LMP2011/2/4 составляет 0,12 мкВ, его температурный дрейф 0,015 мкВ/°C, а общий дрейф напряжения смещения за все время жизни ИМС не превышает 2,5 мкВ.

Рис. 5. а) спектральная плотность напряжения шумов и б) временная зависимость напряжения шумов в полосе частот от 0,1 до 10 Гц для ОУ LMP2011/2/4
Рис. 5. а) спектральная плотность напряжения шумов и б) временная зависимость напряжения шумов в полосе частот от 0,1 до 10 Гц для ОУ LMP2011/2/4

В отличие от используемого в операционных усилителях других фирм метода коррекции нуля со сравнительно низкой частотой, создающего значительные шумы и искажения сигнала уже на частотах в десятки–сотни герц, в ОУ LMP2011/2/4 частота коррекции составляет 35 кГц, что позволяет перенести основной шумовой спектр в высокочастотную область, достигнув тем самым очень низкого уровня шумов и искажений в диапазоне частот — до нескольких десятков килогерц. График спектральной плотности шума и временная зависимость напряжения шумов в полосе частот от 0,1 до 10 Гц для ОУ LMP2011/2/4 приведены на рис. 5а и 5б соответственно. Из рисунков видно, что на частотах≤30 кГц шум не зависит от частоты и не превышает значения 35 нВ/√Гц, а максимальный уровень низкочастотного шума от пика до пика составляет 0,8 мкВ. В целом совокупность великолепных характеристик ОУ LMP2011/2/4, таких как сверхмалое смещение и дрейф, весьма высокие для прецизионных ОУ полоса пропускания и скорость нарастания выходного напряжения в сочетании с низкими шумами и малым потребляемым током, позволяет использовать эти микросхемы в широком классе устройств с повышенной точностью и температурной стабильностью — например, в прецизионных инструментальных усилителях, промышленной аппаратуре, автомобильной электронике и т. п. Операционные усилители LPM2011/2012/2014 совпадают по выводам и с превышением параметров заменяют ОУ OP184/284/484 фирмы Analog Devices Inc.

Для сокращения затрат времени на выбор и тестирование операционных усилителей и компараторов National Semiconductor предлагает ряд программных средств, существенно облегчающих поиск нужного компонента среди массы различных изделий, каждое из которых обладает множеством разнообразных электрических характеристик. Это, во-первых, простое и удобное в использовании руководство по выбору операционных усилителей и компараторов Amplifier Selection Guide — Selguide, выполненное в виде небольшой, не требующей установки, автономно работающей программы под ОС Windows (имеется также версия PalmGuide для PalmOS), которую можно бесплатно скачать с сайта www.national.com/selguide. Программа Selguide включает базу данных элементов, дополнение к которой появляется на сайте каждую неделю, и систему поиска ОУ и компараторов по различным параметрам, в том числе по температурному диапазону и типу корпуса.

Кроме того, большинство операционных усилителей и компараторов National Semiconductor поддерживаются онлайновой технологией проектирования электронных устройств Amplifiers Made Simple, которая является частью программной оболочки WEBENCH, размещенной на сайте фирмы и позволяющей выбрать оптимальный тип операционного усилителя, соответствующий требованиям пользователя, а также промоделировать его работу в типовых схемах. Как и все прочие инструментальные средства семейства WEBENCH, Amplifiers Made Simple абсолютно бесплатна. Различные инструменты WEBENCH интегрированы между собой, что создает дополнительные удобства для пользователя.

Благодаря Amplifiers Made Simple, разработчику электронных устройств больше нет необходимости производить трудоемкие расчеты схем и дорогостоящее физическое макетирование. Технология обеспечивает мгновенный доступ к самым последним SPICE-моделям, параметрам и иной информации об операционных усилителях National Semiconductor, а также позволяет проводить сравнение характеристик нескольких устройств одновременно. Компания National Semiconductor гарантирует поставку любых, поддерживаемых средствами WEBENCH продуктов в пределах 24 часов.

Широкая номенклатура и невысокая стоимость интегральных операционных усилителей National Semiconductors, возможность программного и онлайнового выбора делает их весьма привлекательными для широкого круга разработчиков РЭА. Более подробную техническую информацию можно найти на сайте фирмы www.national.com. Рассмотренные операционные усилители и другие компоненты производства компании National Semiconductor можно приобрести в ЗАО «Промэлектроника»—www.promelec.ru.

Литература

  1. Штрапенин Г. Л. Современные операционные усилители фирмы National Semiconductor // Компоненты и технологии. 2005. № 7.
  2. Штрапенин Г. Л. Быстродействующие операционные усилители фирмы National Semiconductor // Chip News. 2003. № 10.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *