Низкочастотный генератор шума
Генераторы шума довольно часто используются в инженерной практике для формирования сложных спектров, необходимых для достоверного анализа устойчивости трактов передачи информации. Применение шумовых сигналов для низкочастотных цепей имеет тот плюс, что, как правило, передаточные функции данных цепей могут быть приравнены к фильтрам низкой частоты (ФНЧ), чьи передаточные функции описываются полиномами низших порядков. Как известно из теории передачи информации, полоса пропускания белого шума для таких фильтров не соответствует полосе пропускания гармонических сигналов, которые обычно используются при тестировании. Так, для ФНЧ первого порядка — а это самый распространенный на практике вариант представления низкочастотного усилителя — полоса пропускания белого шума превышает полосу пропускания синусоидального сигнала в 1,571 раза [1]. Кроме приведенных примеров, генераторы шума находят применение в генераторах случайных чисел, электронных музыкальных инструментах и для создания маскирующих сигналов.
На практике автор статьи использовал генераторы шума как базовый компонент генераторов случайных чисел, для анализа низкочастотных устройств на воздействие сложных некоррелированных сигналов, для отладки устройств, выделяющих полезный сигнал из сложного зашумленного спектра. Одной из самых интересных работ автора был анализ прохождения через систему слуховых косточек сложного аудиосигнала, который замещался шумом. Работа была направлена на решение вопросов оптимального протезирования в отоларингологии (руководитель работ — профессор, д. м. н. А. Д. Гусаков). Именно использование шумового сигнала позволило по-новому взглянуть на некоторые процессы, участвующие в формировании кривых Флетчера — Мансона (кривые равной слышимости). Без учета этих процессов наблюдался феномен, когда по аудиометру пациент после протезирования имел нормальное звуковосприятие (для проверки при аудиометрии используются тональные сигналы), а в реальной жизни терял распознавание речи (реально это сигналы с широким спектром).
В последнее время автором были успешно завершены ОКР с использованием шумовых сигналов, предусматривавшие создание двух изделий специального назначения. Первое изделие должно было реагировать на возрастание уровня инфранизкочастотных шумов относительно предварительно зафиксированного их среднеквадратичного значения. Задача второго — выделение из зашумленного в относительно широком диапазоне сигнала полезного некоррелированного сигнала. Именно для этих изделий и был разработан предлагаемый прибор. Электрическая принципиальная схема генераторной части прибора представлена на рис. 1.
В основе прибора в качестве первичного источника шума — генератор шума 2Г401В производства Новосибирского завода полупроводниковых приборов [2] (на рис. 1 обозначен как VD2). Выбор пал на этот диод потому, что он имеет наибольшую спектральную плотность напряжения (S) из всей серии диодов 2 Г401, а именно — не менее 30 мкВ/√Гц в нормальных климатических условиях. Граничная частота генерации шума — не менее 1 МГц, а гарантированная нижняя частота генерации шума не превышает 2 Гц. Неравномерность спектральной характеристики во всем диапазоне частот — не более +4 дБ. Поскольку прибор предназначен для формирования низкочастотных шумов в звуковом диапазоне, то в заданном диапазоне частот начальная неравномерность спектральной характеристики значительно ниже и является практически линейной. Нормирование спектральной характеристики генераторов шума типа 2Г401В дает преимущества в их использовании по сравнению с более дешевыми вариантами — стабилитронами [5], обратносмещенными p‑n‑переходами транзисторов или выходным напряжением шумов компенсационных стабилизаторов напряжения [5, 7].
Необходимый для функционирования генератора шума (VD2) ток 50 мкА задан резисторами R8, R10. Включение диода в цепь первичного источника напряжения вызвана требованием обеспечить его рабочее напряжение на уровне не менее 6 В. Выделение необходимого спектра шумового сигнала (если нужен спектр уже, чем 2 Гц — 28 кГц) осуществляется добавочным фильтром, который устанавливается непосредственно между диодом VD2 и схемой нормирования среднеквадратичного уровня выходного напряжения на ИМС DA1. Нормирование выходного шумового сигнала по среднеквадратичному уровню необходимо по нескольким причинам. Во‑первых, разные экземпляры диодов 2Г401В имеют различные значения спектральной плотности напряжения. Спектральная плотность напряжения зависит от вариации характеристик конкретного экземпляра диода, тока через диод, температуры, сопротивления и емкости нагрузки, сопротивления генератора тока формирующего рабочий ток диода [2]. Для примера на рис. 2 представлена область изменения спектральной плотности напряжения для диода 2Г401В только от величины постоянного тока.
Как можно видеть из приведенной зависимости, разброс достаточно существенный. При увеличении температуры окружающей среды до +70 °С (согласно [2]) уменьшение спектральной плотности напряжения может составить до двух раз. Во‑вторых, использование фильтров, выделяющих необходимую область спектра шума, в свою очередь будет уменьшать среднеквадратичное напряжение шумов на выходе фильтра. Так, согласно техническим условиям [2], при минимальном значении спектральной плотности напряжения S = 30 мкВ/√Гц для полосы частот 2 Гц — 28 кГц среднеквадратичное напряжение шумов будет равно:
S×√Δf = 30×√(28000–2) = 5,02 мВ,
для полосы частот 2–1000 Гц составит:
30×√(1000–2) = 0,95 мВ,
а для полосы частот 2–100 Гц составит всего:
30×√(100–2) = 0,3 мВ.
Таким образом, если не осуществить нормирование выходного напряжения генератора шума (как это имеет место в [5]), то в ходе измерений необходима постоянная калибровка прибора, что затруднит его использование. Нормирование выходного сигнала по среднеквадратичному уровню осуществляется каскадом на ИМС SSM2166S (Analog Devices, Inc.) [3]. Данная ИМС представляет собой усилитель с компрессией сигнала, которая задается внешним резистором. Причем схема автоматической регулировки усиления (АРУ) работает именно по среднеквадратичному уровню входного сигнала. Передаточная характеристика устройств на базе этой ИМС представлена на рис. 3.
Подробное описание практической схемы такого усилителя с заданной компрессией, выполненного на SSM2166, приведено в [4]. Встроенный в SSM2166 усилитель, управляемый напряжением (VCA), обеспечивает необходимое усиление, которое динамически регулируется контуром управления так, чтобы сохранить установленную пользователем характеристику сжатия. Степень сжатия может быть установлена от 1:1 до 15:1 относительно определенной пользователем точки поворота. Сигналы выше точки поворота ограничиваются таким образом, чтобы предотвратить перегрузку и устранить эффект «схлопывания». При установке степени сжатия 1:1 усилитель, управляемый напряжением (VCA) ИМС SSM2166, может быть сконфигурирован с усилением до 20 дБ. Это усиление будет дополнением к изменяемому усилению в режимах сжатия. Входной усилитель микросхемы может быть сконфигурирован внешними элементами для обеспечения усиления от 0 до 20 дБ. Убывающее экспандирование (так называемый шумовой затвор) предотвращает усиление шума и внешних помех, лежащих ниже заданного уровня входного сигнала. ИМС серии SSM21xx содержат запатентованный детектор среднеквадратичного значения (AVG). Время усреднения (интеграции) задается внешним конденсатором (обычно используется конденсатор емкостью от 2 до 47 мкФ). Хочу обратить внимание читателей на важный момент. ИМС SSM2166 выпуска до 2009 года не имели на корпусе в строке маркировки буквы «А» (этого суффикса при заказе нет). ИМС, изготовленные после 2009 года, имеют иные номиналы резисторов для установки глубины компрессии. Я советую использовать ИМС SSM2166 выпуска после 2009‑го и последний вариант спецификации, рекомендованный в перечне литературы. Встречающийся в Интернете предыдущий вариант спецификации (Rev.D от 2009 года) имел неточности в разделах, описывающих установку степени компрессии, и в методике установки точки вращения.
Коэффициент усиления каскада на ИМС SSM2166 (D2, рис. 2) примерно 40 дБ, глубина компрессии (15:1), постоянная интегрирования, шумовой затвор и точка поворота выбраны оптимальными для решения поставленной задачи. Как уже отмечалось, детально с их установкой можно ознакомиться в [3, 4]. Уровень выходного сигнала каскада на D2, равный 0,775 В, устанавливается подстроечным резистором R22. Это обеспечит пик-фактор выходного сигнала не менее 3, что достаточно для указанной области применения (как известно, пик-фактор речи составляет 12 дБ). Если требуется больший пик-фактор, то уровень выходного напряжения должен быть установлен ниже.
На выходе генератора установлен буферный выходной каскад на ИМС D3 с регулировкой усиления, поскольку ИМС SSM2166 не имеет защиты от коротких замыканий и имеет низкую нагрузочную способность, а для эффективного использования генератора требуется регулировка уровня выходного сигнала. В рассматриваемом генераторе выходной каскад выполнен на операционном усилителе LMC7101BIM5, частота среза усилителя выбрана равной 28 кГц, при максимальном усилении. Тип операционного усилителя для данной схемы некритичен. Важно, чтобы он был типа rail-to-rail по выходу и обеспечивал работоспособность от однополярного питающего напряжения +5 В. Регулятор усиления (R7) в практической конструкции прибора — это переменный резистор с понижающим редуктором. Выходное сопротивление генератора стандартное — 600 Ом.
Еще одной особенностью предлагаемого генератора является предусмотренная его конструкцией возможность добавления в спектр шумового сигнала внешних сигналов. Смешение сигналов осуществляется в буферном выходном каскаде. Сигнал подается на внешний вход «Внеш. ». Входное сопротивление этого входа стандартное — 600 Ом. Регулировка такого комплексного сигнала — общая. При необходимости шумовой сигнал можно отключать нажатием на кнопку «Шум ОТКЛ». В том случае если внешний сигнал был подан, он потупит на тестируемое устройство без шумовой составляющей. Причем все шумы, имеющиеся на входе каскада на DA1, будут подавлены не менее чем на 60 дБ, так как сработает шумовой затвор ИМС SSM2166 (рис. 4).
Если необходима ступенчатая регулировка выходного сигнала, то устройство может быть дополнено масштабирующим усилителем (на рис. 1 показан как опционный), схема такого усилителя приведена на рис. 4. Именно этот выходной каскад использован в практическом варианте исполнения генератора.
Масштабирующий усилитель позволяет выбрать один из четырех диапазонов установки выходного напряжения 0–1 мВ, 0–10 мВ, 0–100 мВ, 0–1 В. Приоритет имеет переключатель наименьшего диапазона.
В качестве фильтров, выделяющих необходимую область спектра шума, рекомендуется использовать фильтр не ниже четвертого порядка. В практическом варианте исполнения прибора предусмотрен фильтр на специализированной ИМС LTC1563-2CGN [6] (рис. 5). Ее применение оправдано малым уровнем собственных шумов, простотой реализации на ней фильтров высоких порядков, отсутствием внешних частотозадающих конденсаторов и имеющейся на сайте компании Linear Technology свободной программой для расчета.
Питание прибора осуществляется от гальванических элементов (в оригинальном генераторе от внешнего аккумулятора напряжением 12,6 В).
Описанный прибор особенно будет полезен всем, кому требуется генератор шума в полевых условиях, и особенно тем, кто не так часто использует подобные генераторы. Стабильность в работе, отсутствие необходимости постоянной подстройки, дешевизна и универсальность прибора (как отмечалось, он может быть настроен на любой нужный спектр шума и добавить в него внешний сигнал) является веским аргументом и избавит потребителя от покупки весьма дорогостоящего профессионального генератора. Внешний вид генератора шума, который используется автором статьи, можно увидеть на рис. 6.
Общее решение предлагаемого генератора в кратком описание впервые было опубликовано в [8].
- Достал И. Операционные усилители. Пер. с англ. М.: Мир, 1982.
- Кремниевые p‑n‑генераторы шума 2Г401А‑2Г401В
- SSM2166 Microphone Preamplifier with Variable Compression and Noise Gating. Rev.E, 2013. Analog Devices Inc.
- Рентюк В. Практика использования ИМС усилителей с АРУ серии SSM21xx // Радиолоцман. 2014. Май. Июнь.
- Hageman S. White noise source flat from 1Hz to 100kHz. EDN. 2013. September 12.
- LTC1563-2/LTC1563-3 Active RC, 4th Order Lowpass Filter Family LT 1205 REV A Linear Technology Corp. 2005.
- Рентюк В. Высокоэффективный генератор шума на базе стабилизатора напряжения // Компоненты и технологии. 2014. № 1.
- Rentyuk V. Versatile noise generator tests signal recovery gear // EDN. 2014. May, 19.