Новые модульные трансформаторы MTS / МТС / МТМ

№ 8’2006
В статье приводится краткое описание конструкции, принципа работы и оптимизирующего расчета компактных модульных трансформаторов MTS/MTC/MTM.

В последнее время появилось множество новых схемных решений и электронных компонентов, которые позволяют создавать сетевые источники питания, работающие на частотах до 700 кГц и выше. Несмотря на это, размеры источников питания часто превосходят размеры самых сложных электронных блоков, питающихся от них. Одна из причин этого— относительно большой размер электромагнитного трансформатора. Уменьшить его невозможно из-за достигнутого предела характеристик доступных проводниковых и ферромагнитных материалов. На текущий момент альтернативы электромагнитному трансформатору не существует. Заменяющие его устройства оказываются более крупными, дорогими и менее надежными. Избежать применения трансформатора не удается в большинстве бытовых и промышленных электрических устройств.

В электронной и электротехнической промышленности в основном используются однофазные трансформаторы, хотя вполне обоснованно можно использовать трехфазные и более сложные. В качестве ферромагнитного материала трансформаторов в этих отраслях обычно используют листовые электротехнические стали (в частотном диапазоне до 20 кГц) или ферриты (при более высоких частотах). До мегагерцового диапазона их успешно начали заменять тонколистовым прокатом нанокристаллических сплавов, легированных бором. В России такой материал серийно производится Ашинским металлургическим заводом. Мощность наиболее часто используемых трансформаторов в электронике и электротехнике лежит в диапазоне от 0,5 Вт до 10 кВт. Трансформаторы больших мощностей (от 10 кВА до 2 ГВА и выше) в основном выполняются трехфазными и используются в энергетике— на электростанциях и подстанциях, в системах электроснабжения населенных пунктов и промышленных предприятий.

Современная электроника и электротехника уже производят мощные силовые переключающие компоненты, в том числе полевые и биполярные транзисторы с изолированным затвором, и необходимые блоки контроля и управления этими компонентами. Поэтому становится неизбежным использование в этих отраслях мощных трансформаторов. Нельзя забывать и об измерительных трансформаторах тока и напряжения, которые являются надежными и необходимыми компонентами большого семейства контролирующей и управляющей аппаратуры, релейных защит и других устройств. Кратко отметим, что основная масса трансформаторов в системах электроснабжения была введена в эксплуатацию тридцать и более лет назад и почти отработала свой ресурс. Вывод — рынку хороших трансформаторов всех типов и мощностей присущ большой дефицит, электромагнитные трансформаторы являются товаром повышенного спроса, а их производство — одним из самых выгодных видов бизнеса.

Как же идет развитие производства трансформаторов? Многие отечественные и зарубежные предприятия успешно используют технологию литой изоляции обмоток, обмотки из медной и алюминиевой фольги вместо проволоки. Это позволяет в 1,2–1,3 раза уменьшить размеры трансформаторов, увеличить их надежность. Существенно улучшить качество и уменьшить размеры только этими методами не удается. В высокочастотных трансформаторах многие предприятия используют ферриты и нанокристаллический тонкий ферромагнитный прокат. Недостатком этих ферромагнетиков является низкая индукция насыщения Bmaх, не превышающая 0,2–0,5 Т. Это приводит к неизбежному увеличению размеров трансформатора. Использование тонкого проката гадолиния и сплавов других редкоземельных ферромагнетиков (разработки лаборатории надводных вооружений США и некоторых лабораторий Японии) с высоким Bmaх, достигающим 2,6 Т, уменьшает размеры трансформаторов только в 1,5 раза, но стоимость трансформатора становится в 3 раза выше, чем стоимость золотого слитка такого же веса.

Перед автором стояла задача создать электромагнитный трансформатор, по компактности и характеристикам превосходящий существующие на мировом рынке. На первый взгляд, в магнитопроводе обычного трансформатора уже имеется наведенный вихревой ток, который считается паразитным, и все изготовители довольно успешно его уменьшают, однако при этом они вынуждены «разбавлять» характеристики ферромагнетика, так как любые прослойки и легирование уменьшают концентрацию активного ферромагнитного химического элемента. Почему же нельзя использовать чистое железо с низким электрическим сопротивлением, но с относительной магнитной проницаемостью, достигающей 1 500 000? Ведь превратив магнитопровод во вторичную обмотку, можно паразитный вихревой ток превратить в полезный ток вторичной обмотки! При таком техническом решении на высоких частотах не нужен феррит, а Bmaх достигает 2,1 Т. Необходимо было проверить, уместится ли такая обмотка в размеры магнитопровода рассчитанного сечения. Ведь «железную» обмотку из-за большего удельного электрического сопротивления придется делать в 5,6 раза толще, чтобы ее сопротивление осталось таким же, как у заменяемой «медной». Расчеты показали, а измерения на рабочих макетах подтвердили, что даже при использовании «черной» лакированной жести марок ЧЖК и ЧЖОН не приходится увеличивать сечение магнитопровода, а размеры трансформатора уменьшаются, так как сохраняется только обычная первичная обмотка. Стало ясно, что использование чистого железа даст существенный выигрыш, и можно считать, что первый результат в разработке трансформатора достигнут. Теперь сравним цены: стоимость чистого железа составляет примерно 20 руб./кг, электротехнической стали и ферритов — 60 руб./кг, нанокристаллических сплавов — до 600 руб./кг, а меди — 300 руб./кг. Значит, при использовании железа вместо меди и перечисленных ферромагнетиков стоимость нового трансформатора при крупносерийном производстве можно снизить в 2 раза.

Основные силы были брошены на производство тонкого полотна электролитического железа. Технология мало отличается от технологии производства медной фольги — используется электролизер с вращающимся титановым катодом. Благодаря опыту саратовского ООО «Катион» в области железнения и изучению технологий японских авторов, после кропотливых экспериментов мы научились работать с капризным водным раствором FeCl2. Мы научились производить полотно нужного недорогого ферромагнетика со строго заданной толщиной от 1 до 200 мкм. Были решены вопросы прочной тонкой лаковой и оксидной изоляции с высокой адгезией, ровной навивки и файн-торцовки рулонов вторичной обмотки магнитопровода, противоречивые задачи обеспечения электрической изоляции и уменьшения зазора в магнитопроводе, укладки выводов. В высоковольтных трансформаторах использована собственная технология литой изоляции и оригинальная конструкция охлаждения обмоток и сердечника.

Так был создан новый тип модульных трансформаторов (понижающих Module Transformers for Supply и повышающих Module Transformers for Converting), конструкция которых вне всякой конкуренции обеспечивает необходимые качество, компактность и надежность, вдвое меньшие потери, вдвое меньшую реактивную мощность, невысокую стоимость, удобство при монтаже и эксплуатации, а также высокую симметричность выходного напряжения трехфазных трансформаторов [1]. Конечно же, те организации, которые используют в своей аппаратуре новый тип трансформаторов, могут значительно снизить размеры и вес этой аппаратуры, снизить ее стоимость, увеличить ее надежность. Для того чтобы разработчики различного оборудования имели представление о некоторых отличиях нового трансформатора, приведем его сокращенное описание.

Идея заключается в следующем: вторичные обмотки трансформатора полностью выполняются из фольги чистого ферромагнетика (железа), изолированной оксидом, стеклом или лаком, и частично или полностью заменяют сердечник трансформатора. Таким образом достигается существенная экономия объема. В результате оптимизирующего расчета соотношения размеров обмоток и сердечника было достигнуто уменьшение линейных размеров трансформатора в 2,2–2,5 раза. На рис. 1а приведен один вариант схемной конструкции однофазного трансформатора, рекомендуемого для применения в электронной и электротехнической промышленности, а на рис. 1б — трехфазного трансформатора для применения в электротехнической промышленности и энергетике.

В чем же основные отличия новых трансформаторов от трансформаторов обычной конструкции?

Рассмотрим стандартный однофазный трансформатор мощности [2]. При этом пренебрегаем потерями в материале обмоток и ферромагнитного сердечника (токами Фуко и потерями на гистерезис), а также потерями рассеяния магнитного поля. Полагая сердечник монолитным, считаем линейной зависимость индукции В магнитного поля от напряженности Н магнитного поля в материале сердечника, т. е. В = ƒ (Н). Обозначим: V, S, l — эффективные объем, сечение и длина сердечника; ƒ и ω — частота и циклическая частота напряжения сети, где ω = 2π׃ ; N1, U1 и I1 — число витков, напряжение и ток первичной обмотки, N2, U2 и I2 — то же для вторичной обмотки; 1, I и U = е — то же, когда вторичная обмотка содержит только один виток; RL — сопротивление нагрузки; Pном = Р2 = U2I2 — номинальная мощность трансформатора; Pμ — реактивная мощность намагничивания материала сердечника, значение которой дается стандартами для каждого Pном, либо дается коэффициент мощности трансформатора cosφ ? Pном/(Pном + Рμ); Рμ,уд — то же для единицы объема материала сердечника; Rм — сопротивление магнитной цепи; Iμ1 — реактивный ток первичной обмотки при намагничивании сердечника, когда U1 является входным напряжением; Iμ2 — реактивный ток вторичной обмотки, когда U2 является входным напряжением; Iμ — реактивный ток обмотки, когда она содержит только один виток; L1 и Lμ1 — соответственные индуктивность и индуктивность холостого хода (х.х.) первичной обмотки; L2 и Lμ2 — то же для вторичной обмотки; L и Lμ — то же, если обмотка содержит только один виток; Ф — магнитный поток в сердечнике; Н1 — напряженность магнитногополя, индуцируемая током I1; Н2 — напряженность магнитного поля, индуцируемая током I2; В1 и В2 — соответствующие им индукции магнитного поля; НI и ВI — то же, если обмотка содержит только один виток. Используем в формулах систему единиц измерения СИ.

Закон полного тока трансформатора (уравнение Максвелла) [2]: N1I1 = N2I2 + N1I?1, где I?1 с приемлемой точностью определяется по одной из формул:

1) реактивной мощности трансформатора

2)

где: U1 = N1е; U2 = N2е; Lμ1 = N1²/Rм;

Lμ2 = N2²/Rм; Lμ = 1/Rм; Rм = (Н/В)×l/S.

Следствие закона полного тока для трансформатора с однородным сечением сердечника, охваченным как первичной, так и вторичной обмотками: при постоянстве входного напряжения на выводах обмотки магнитный поток Ф в сердечнике не зависит от значения тока нагрузки, и, значит, в этом случае не зависит от ампер-витков входной обмотки.

Трансформатор можно рассматривать по отношению к его входной обмотке как двухполюсник — гиратор, имеющий только входную обмотку, заменив сердечник и выходную обмотку на эквивалент сердечника. Из-за влияния тока нагрузки (диамагнитной реакции выходной обмотки) увеличивается магнитное сопротивление части сердечника, охваченной выходной обмоткой, и общее комплексное магнитное сопротивление магнитной цепи возрастает в (N1jIμ1 + N2I2)/(N1jTμ1) = N1I1/(N1jTμ1) = I1/(jIμ1) ? I2/(jTμ2) = I/(jTμ) раз. Из равенств N1I1 = Н1l, N2I2 = Н2l, I = НIl, N1Iμ1 = N2Iμ2 = Iμ = Нl, следует, что магнитное сопротивление части сердечника с длиной l1 и охваченной выходной обмоткой с током I2 возрастает по модулю в Н1l1/(Нl1) = Н1l/(Нl) = I1/Iμ1 ? I2/Iμ2 = I/Iμ раз.

Теперь рассмотрим трансформатор MTS/MTC.

Для удобства описания работы его конструкция эквивалентна следующей. Замкнутый ферромагнитный сердечник условно состоит из частей с одинаковым сечением S: первого центрального сердечника 1 с длиной l1, охваченного входной (наводящей) обмоткой N1, верхнего ярма и нижнего ярма с длинами lу и второго центрального сердечника 2 с длиной l1. Центральный сердечник 2 разделен на параллельные ветви, имеющие равномерные сечения S1, S2, S3, …, Sn и одинаковую длину; количество ветвей равно n. При этом первый виток N2,1 вторичной (нагрузочной) обмотки N2 охватывает ветвь с сечением S1; второй виток N2,2 — ветви с сечениями S1 и S2; третий виток N2,3 — ветви с сечениями S1, S2, S3; n-ный виток N2,n — ветви с сечениями S1, S2, S3, …, Sn, т. е. весь центральный сердечник 2. Сумма сечений S1, S2, S3, …, Sn равна S. Считаем, что верхнее ярмо соединено со всеми ветвями в одной точке сверху, а нижнее — со всеми ветвями в одной точке снизу. Для наглядности рисунка принимается частный случай: n = 3 (как показано на рис. 2а). Более наглядна эквивалентная конструкция, изображенная на рис. 2б. Здесь тонкая ветвь S1 охвачена условной вторичной обмоткой N2,1 с числом витков n, S2 — обмоткой N2,2 с числом витков (n–1), S3 — обмоткой N2,3 с числом витков (n–2), …, Sn — обмоткой N2,n с числом витков 1. Все эти вторичные обмотки включены последовательно и образуют единую вторичную обмотку N2 с выходным напряжением U2.

Рис. 2. Эквивалентная конструкция трансформатора MTS/MTC

При номинальной нагрузке Rн по вторичной обмотке N2 протекает ток I2 = U2/Rн.

Рассмотрим распределение значений магнитных и электрических параметров вдоль всего сердечника трансформатора и определим магнитный поток Фi в каждой его части (табл. 1).

Таблица 1. Распределение магнитных и электрических параметров вдоль сердечника трансформатора, магнитные сопротивление Rм и поток Фi в каждой его части

Из расчетов таблицы 1 следует, что магнитный поток не изменяется при прохождении тока по частям обмотки N2, т. е. значение магнитной индукции В по всему сечению S нагрузочного сердечника 2 сохраняется постоянным независимо от значения тока нагрузки, протекающего по виткам вторичной обмотки.

Для определения выходного напряжения U2 трансформатора MTS/MTC (рис. 1) рассмотрим его режим холостого хода.

При подключении выводов первичной обмотки N1 к контактам источника питания переменного тока с напряжением U1 и циклической частотой ω, по ее виткам течет ток I1, наводящий равномерно распределенный переменный магнитный поток Ф в охваченном обмоткой ферромагнитном сердечнике. Как в любом электромагнитном трансформаторе, ЭДС обмотки определена из соотношения U1 = N1ωФ = N1ωSB [2], т. е. напряжение на выводах любой обмотки прямо пропорционально сумме сечений S сердечника, охваченных каждым витком обмотки. Значение В выбрано по кривой намагничивания материала сердечника, а магнитное сопротивление сердечника в режиме холостого хода определено с учетом зазоров между его частями, заполненных ферромагнитным электроизолирующим пластиком: l = 2l1 + 2ly + 4δμ12, где μ12 — соотношение относительной магнитной проницаемости материалов сердечника и пластика при индукции В.

Магнитный поток Ф, равномерно распределенный по всему сечению S цилиндра вторичной обмотки из ферромагнитного металла, охватывается витками-слоями этой обмотки и наводит в них ЭДС.

Но витки вторичной обмотки N2, расположенные ближе к центральной оси цилиндра, охватывают меньшую часть потока Ф, чем ее витки, расположенные дальше от этой оси. Пусть R1 и R2 — радиус полости и наружный радиус рулона обмотки N2, где R2/R1 = kR; k — шаг спирали навивки рулона. Радиус витка произвольного рулона без полости равен r = kφ = 2πkn, где φ — угол оборотов навивки в радианах, n — число витков навивки. Значит, обмотка с числом витков N2 = N2‘–N2» является рулоном без полости с числом витков N2‘ = R2/(2πk), из которого коаксиально вырезан рулон без полости с числом витков N2» = R1/(2πk).

Поэтому сумма сечений Sn ферромагнетика сердечника, охваченного слоями рулона, т. е. витками вторичной обмотки, равна интегралу ΣSn = π×NN2′[(2πkn)² – R1² ]dn = π×[(2πkn³/3 – R1²n)] N|N2′ = (R2³ – 3R1²R2 + 2R1³)/(6k).

Если этот рулон с полостью охватить N2 витками неферромагнитного проводника, то сумма охваченных сечений ферромагнетика равна N2S = (R2R1)×(R2² – R1²)/(2k). Тогда реальное число витков N2 вторичной обмотки 2, необходимое для получения заданного вторичного напряжения U2 на выходе трансформатора, равно N2 = N1×U2/(U1×kU), где: kU = (kR³ – 3kR + 2)/[3(kR–1)²(kR + 1)] < 1 — коэффициент снижения напряжения вторичной обмотки по сравнению с напряжением вторичной обмотки обычного трансформатора с таким же количеством витков обмоток N1 и N2. В таблице 2 показана зависимость коэффициента kU от соотношения kR радиусов рулона и его полости. Таким образом, число витков вторичной обмотки трансформатора MTS/MTC должно быть больше в (1/kU) раз, чем число витков вторичной обмотки обычного трансформатора. Кроме этого, даже чистое железо, используемое для изготовления вторичной обмотки, имеет удельное электрическое сопротивление в 5,54 большее, чем удельное электрическое сопротивление меди. Для сохранения омических потерь на единицу объема проводника обмотки сечение проводника приходится увеличивать в 5,54 раза.

Таблица 2. Зависимость коэффициента kU уменьшения ЭДС железной обмотки (по сравнению с медной), от соотношения kR радиусов рулона и его полости

Тем не менее, даже с учетом необходимости увеличения массы железа вторичной обмотки, она полностью укладывается в размеры второго центрального сердечника. Кроме того, длина проводников как первичной, так и вторичной обмоток в среднем в 1,5 раза меньше, чем у обычного трансформатора. Поэтому путем оптимизационных моделирующих расчетов размеров деталей, например, трансформатора мощностью 1 кВт на напряжения 220/12 В, при равенстве омических сопротивлений обмоток нового и обычного трансформаторов удалось снизить массу сердечника и медных обмоток в 3,3 раза, а линейные размеры в 2,2 раза. Для трехфазных и более сложных трансформаторов с такими же параметрами линейные размеры уменьшаются в 2,5 раза. Для трехфазных и более сложных мощных (1000 МВА на напряжения до 63 кВ) трансформаторов с естественным воздушным охлаждением из-за необходимости введения в сердечник и обмотки каналов охлаждения и дополнительных электроизолирующих воздушных зазоров достигнута экономия только активных материалов в 1,8–2 раза.

Для точных расчетов в комплексных величинах удобно пользоваться специальной программой, работающей с Excel и использующей схему с приведенными комплексными значениями напряжений, токов, сопротивлений (рис. 3).

Рис. 3. Схема замещения однофазного трансформатора

На рис. 3. приведена схема замещения однофазного трансформатора. Здесь U1, U2‘ — входное напряжение и выходное напряжение; I1 и I2‘ — входной и выходной токи; R1, R2‘ и Rн‘ — омические сопротивления первичной и вторичной обмоток и выходной нагрузки; храсс1 = храсс2‘ — индуктивные сопротивления рассеяния обмоток; хμ — реактивное сопротивление трансформатора; rвихр||rгист — сопротивления потерь в сердечнике; E1 и E2‘— ЭДС первичной и вторичной обмоток.

Эта же схема используется при расчете трехфазных трансформаторов. Ток холостого хода также рассчитывается по формуле Iμ1 = U1*/(ωLμ1*), где Lμ1* = N1*²/Rм*. При этом для схемы включения входных обмоток «в звезду» или «в звезду с нулевым выводом» напряжение расчетной фазы раскладывается на сумму напряжений смежных фаз с обратным знаком. Далее расчет ведется как для однофазного трансформатора, сердечник которого состоит из центрального сердечника расчетной фазы, центрального сердечника одной смежной фазы и ярем, которые их соединяют. Входные обмотки этих фаз магнитно связаны общим сердечником, поэтому N1* = 2N1. Эти обмотки включены последовательно на напряжение U1* = 2U1, где U1 — напряжение одной фазы. Для схемы включения входных обмоток «в треугольник» на эти последовательно включенные обмотки подается напряжение U1* = U1. Методика расчета многофазных трансформаторов аналогична. Все расчеты проверены на рабочих образцах трансформаторов.

Идея конструкции MTS/MTC применима не только для трансформаторов мощности, но и для измерительных трансформаторов тока и напряжения (тип МТМ — Module Transformers for Measurement), а также других электромагнитных трансформаторов, работающих в разных диапазонах частот, мощностей и напряжений.

Сложная технология производства MTS/MTC легко автоматизируется, что позволяет снизить их стоимость по сравнению со стоимостью других трансформаторов почти в 2 раза. Модульная конструкция позволяет легко заменять неисправные части.

В этой статье не рассматривается второе поколение MTS/MTC трансформаторов, т. к. их конструкции находятся на стадии отработки технологии производства. Автор надеется, что вместе с появлением на отечественном рынке трансформаторов MTS/MTC/MTM читатели смогут получить полную информацию со страниц этого журнала.

xosotin chelseathông tin chuyển nhượngcâu lạc bộ bóng đá arsenalbóng đá atalantabundesligacầu thủ haalandUEFAevertonxosofutebol ao vivofutemaxmulticanaisonbetbóng đá world cupbóng đá inter milantin juventusbenzemala ligaclb leicester cityMUman citymessi lionelsalahnapolineymarpsgronaldoserie atottenhamvalenciaAS ROMALeverkusenac milanmbappenapolinewcastleaston villaliverpoolfa cupreal madridpremier leagueAjaxbao bong da247EPLbarcelonabournemouthaff cupasean footballbên lề sân cỏbáo bóng đá mớibóng đá cúp thế giớitin bóng đá ViệtUEFAbáo bóng đá việt namHuyền thoại bóng đágiải ngoại hạng anhSeagametap chi bong da the gioitin bong da lutrận đấu hôm nayviệt nam bóng đátin nong bong daBóng đá nữthể thao 7m24h bóng đábóng đá hôm naythe thao ngoai hang anhtin nhanh bóng đáphòng thay đồ bóng đábóng đá phủikèo nhà cái onbetbóng đá lu 2thông tin phòng thay đồthe thao vuaapp đánh lô đềdudoanxosoxổ số giải đặc biệthôm nay xổ sốkèo đẹp hôm nayketquaxosokq xskqxsmnsoi cầu ba miềnsoi cau thong kesxkt hôm naythế giới xổ sốxổ số 24hxo.soxoso3mienxo so ba mienxoso dac bietxosodientoanxổ số dự đoánvé số chiều xổxoso ket quaxosokienthietxoso kq hôm nayxoso ktxổ số megaxổ số mới nhất hôm nayxoso truc tiepxoso ViệtSX3MIENxs dự đoánxs mien bac hom nayxs miên namxsmientrungxsmn thu 7con số may mắn hôm nayKQXS 3 miền Bắc Trung Nam Nhanhdự đoán xổ số 3 miềndò vé sốdu doan xo so hom nayket qua xo xoket qua xo so.vntrúng thưởng xo sokq xoso trực tiếpket qua xskqxs 247số miền nams0x0 mienbacxosobamien hôm naysố đẹp hôm naysố đẹp trực tuyếnnuôi số đẹpxo so hom quaxoso ketquaxstruc tiep hom nayxổ số kiến thiết trực tiếpxổ số kq hôm nayso xo kq trực tuyenkết quả xổ số miền bắc trực tiếpxo so miền namxổ số miền nam trực tiếptrực tiếp xổ số hôm nayket wa xsKQ XOSOxoso onlinexo so truc tiep hom nayxsttso mien bac trong ngàyKQXS3Msố so mien bacdu doan xo so onlinedu doan cau loxổ số kenokqxs vnKQXOSOKQXS hôm naytrực tiếp kết quả xổ số ba miềncap lo dep nhat hom naysoi cầu chuẩn hôm nayso ket qua xo soXem kết quả xổ số nhanh nhấtSX3MIENXSMB chủ nhậtKQXSMNkết quả mở giải trực tuyếnGiờ vàng chốt số OnlineĐánh Đề Con Gìdò số miền namdò vé số hôm nayso mo so debach thủ lô đẹp nhất hôm naycầu đề hôm naykết quả xổ số kiến thiết toàn quốccau dep 88xsmb rong bach kimket qua xs 2023dự đoán xổ số hàng ngàyBạch thủ đề miền BắcSoi Cầu MB thần tàisoi cau vip 247soi cầu tốtsoi cầu miễn phísoi cau mb vipxsmb hom nayxs vietlottxsmn hôm naycầu lô đẹpthống kê lô kép xổ số miền Bắcquay thử xsmnxổ số thần tàiQuay thử XSMTxổ số chiều nayxo so mien nam hom nayweb đánh lô đề trực tuyến uy tínKQXS hôm nayxsmb ngày hôm nayXSMT chủ nhậtxổ số Power 6/55KQXS A trúng roycao thủ chốt sốbảng xổ số đặc biệtsoi cầu 247 vipsoi cầu wap 666Soi cầu miễn phí 888 VIPSoi Cau Chuan MBđộc thủ desố miền bắcthần tài cho sốKết quả xổ số thần tàiXem trực tiếp xổ sốXIN SỐ THẦN TÀI THỔ ĐỊACầu lô số đẹplô đẹp vip 24hsoi cầu miễn phí 888xổ số kiến thiết chiều nayXSMN thứ 7 hàng tuầnKết quả Xổ số Hồ Chí Minhnhà cái xổ số Việt NamXổ Số Đại PhátXổ số mới nhất Hôm Nayso xo mb hom nayxxmb88quay thu mbXo so Minh ChinhXS Minh Ngọc trực tiếp hôm nayXSMN 88XSTDxs than taixổ số UY TIN NHẤTxs vietlott 88SOI CẦU SIÊU CHUẨNSoiCauVietlô đẹp hôm nay vipket qua so xo hom naykqxsmb 30 ngàydự đoán xổ số 3 miềnSoi cầu 3 càng chuẩn xácbạch thủ lônuoi lo chuanbắt lô chuẩn theo ngàykq xo-solô 3 càngnuôi lô đề siêu vipcầu Lô Xiên XSMBđề về bao nhiêuSoi cầu x3xổ số kiến thiết ngày hôm nayquay thử xsmttruc tiep kết quả sxmntrực tiếp miền bắckết quả xổ số chấm vnbảng xs đặc biệt năm 2023soi cau xsmbxổ số hà nội hôm naysxmtxsmt hôm nayxs truc tiep mbketqua xo so onlinekqxs onlinexo số hôm nayXS3MTin xs hôm nayxsmn thu2XSMN hom nayxổ số miền bắc trực tiếp hôm naySO XOxsmbsxmn hôm nay188betlink188 xo sosoi cầu vip 88lô tô việtsoi lô việtXS247xs ba miềnchốt lô đẹp nhất hôm naychốt số xsmbCHƠI LÔ TÔsoi cau mn hom naychốt lô chuẩndu doan sxmtdự đoán xổ số onlinerồng bạch kim chốt 3 càng miễn phí hôm naythống kê lô gan miền bắcdàn đề lôCầu Kèo Đặc Biệtchốt cầu may mắnkết quả xổ số miền bắc hômSoi cầu vàng 777thẻ bài onlinedu doan mn 888soi cầu miền nam vipsoi cầu mt vipdàn de hôm nay7 cao thủ chốt sốsoi cau mien phi 7777 cao thủ chốt số nức tiếng3 càng miền bắcrồng bạch kim 777dàn de bất bạion newsddxsmn188betw88w88789bettf88sin88suvipsunwintf88five8812betsv88vn88Top 10 nhà cái uy tínsky88iwinlucky88nhacaisin88oxbetm88vn88w88789betiwinf8betrio66rio66lucky88oxbetvn88188bet789betMay-88five88one88sin88bk88xbetoxbetMU88188BETSV88RIO66ONBET88188betM88M88SV88Jun-68Jun-88one88iwinv9betw388OXBETw388w388onbetonbetonbetonbet88onbet88onbet88onbet88onbetonbetonbetonbetqh88mu88Nhà cái uy tínpog79vp777vp777vipbetvipbetuk88uk88typhu88typhu88tk88tk88sm66sm66me88me888live8live8livesm66me88win798livesm66me88win79pog79pog79vp777vp777uk88uk88tk88tk88luck8luck8kingbet86kingbet86k188k188hr99hr99123b8xbetvnvipbetsv66zbettaisunwin-vntyphu88vn138vwinvwinvi68ee881xbetrio66zbetvn138i9betvipfi88clubcf68onbet88ee88typhu88onbetonbetkhuyenmai12bet-moblie12betmoblietaimienphi247vi68clupcf68clupvipbeti9betqh88onb123onbefsoi cầunổ hũbắn cáđá gàđá gàgame bàicasinosoi cầuxóc đĩagame bàigiải mã giấc mơbầu cuaslot gamecasinonổ hủdàn đềBắn cácasinodàn đềnổ hũtài xỉuslot gamecasinobắn cáđá gàgame bàithể thaogame bàisoi cầukqsssoi cầucờ tướngbắn cágame bàixóc đĩaAG百家乐AG百家乐AG真人AG真人爱游戏华体会华体会im体育kok体育开云体育开云体育开云体育乐鱼体育乐鱼体育欧宝体育ob体育亚博体育亚博体育亚博体育亚博体育亚博体育亚博体育开云体育开云体育棋牌棋牌沙巴体育买球平台新葡京娱乐开云体育mu88qh88
Литература
  1. www.cass-electronics.com
  2. Бессонов Л. А. Теоретические основы электротехники. М.: «Высшая школа». 1973.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *