Метод контроля технологии светодиодных структур

№ 6’2005
В статье описан неразрушающий метод контроля стабильности технологии легирования светодиодных структур, основанный на измерении распределения концентрации заряженных центров в слабо легированной области p-n-перехода методом динамической емкости.

В статье описан неразрушающий метод контроля стабильности технологии легирования светодиодных структур, основанный на измерении распределения концентрации заряженных центров в слабо легированной области p-n-перехода методом динамической емкости.

Метод измерения концентрации неподвижных заряженных центров в полупроводниковых структурах методом динамической емкости

Стабильность распределения концентрации электрически активных центров в относительно слабо легированной области диодной структуры, особенно с наноразмерными слоями, является условием их длительной работоспособности. Как правило, в слабо легированную область инжектируются носители заряда противоположного знака, и в ней происходит их излучательная или безызлучательная рекомбинация, определяющая характеристики диодов. Эта область часто называется активной, особенно в светодиодах.

Неразрушающее экспериментальное определение профиля концентрации заряженных центров (КЗЦ) в наноразмерных структурах — весьма сложная задача, требующая как высокого разрешения по глубине исследуемого профиля, так и адекватности математического аппарата. Традиционный вольт-фарадный метод в этом отношении обладает рядом недостатков, среди которых наиболее существенный — большая ошибка измерений на краях диапазона напряжений смещения, где преобладает барьерная емкость, особенно при больших обратных напряжениях смещения.

Принцип представляемого метода заключается в одновременном измерении величины емкости барьерной структуры и параметров динамической барьерной емкости, возникающей в результате модуляции края области пространственного заряда (ОПЗ) с малым переменным напряжением. В первом случае электрический сигнал на выходе измерительного устройства содержит информацию о ширине ОПЗ (сечении профиля), во втором — информацию о величине концентрации неподвижных заряженных центров (ЗЦ) на краю ОПЗ в этом сечении.

Начнем с того, что любую диодную (барьерную) структуру, которая находится под действием постоянного напряжения смещения UС и малого переменного напряжения u(t), можно представить в виде последовательно включенных постоянной барьерной емкости CC и динамической барьерной емкости CD.

Величины UС и CD могут быть рассчитаны по формулам:

где ε, ε0 — относительная и абсолютная диэлектрические константы;

S — площадь барьерной структуры;

W — ширина ОПЗ при постоянном напряжении смещения U0;

ΔW — амплитуда модуляции ширины ОПЗ относительно Wпри наложении на постоянное напряжение смещения UС малого переменного напряжения смещения с амплитудой U0.

Если создать условия, при которых вместо напряжения модуляции u(t) модуляцию ОПЗ создавать малым переменным зарядом Δq(t) с постоянной амплитудой ΔQ,

где ƒ1 и ƒ2 — частоты составляющих гармонических зарядов; ƒ1 ≈ ƒ2, то переменное напряжение на барьерной структуре рассчитывается по формуле:

где ΔW(t) — модуляция ширины ОПЗ.

Как правило, площадь ОПЗ диодной структуры одинакова по всей области ее изменения при различных напряжениях смещения. Поэтому при постоянстве ΔQ, задаваемого экспериментально, амплитуда модуляции ОПЗ может быть представлена выражением:

где q = 1,67×10–19 Кл — элементарный заряд; N(W) — усредненная по ΔW концентрация заряженных центров на краю ОПЗ (на расстоянии W от границы сильно легированного слоя).

Подставляя (4) в (3), получим:

При разложении произведений тригонометрических функций на элементарные составляющие, получим выражение, показывающее, что напряжение uС(t) состоит из нескольких гармоник с частотами ƒ1, ƒ2, 2ƒ1, 2ƒ2, (ƒ12), (ƒ12). Первые две из указанных гармоник содержат информацию оширине ОПЗ (сечении профиля КЗЦ), остальные — о величине концентрации ЗЦ в этом сечении.

В устройстве, реализующем рассматриваемый метод (рис. 1), барьерную структуру устанавливают в цепь отрицательной обратной связи операционного усилителя (ОУ), а малый переменный заряд Δq(t) задают подачей двух меандров с различными, но близкими частотами от генераторов прямоугольных импульсов на инвертирующий вход ОУ через калиброванный по величине емкости конденсатор С0. В этом случае

Блок-схема измерительного устройства.
Рис. 1. Блок-схема измерительного устройства:
1, 7 — генераторы прямоугольных импульсов; 2 — блок выделения сигнала с разностной частотой; 3 — фазовый детектор тракта выделения сигнала с динамической барьерной емкости, содержащий информацию о концентрации ЗЦ на краю ОПЗ; 4 — мультиплексор; 5 — детектор сигнала по модулю; 6 — аналогово-цифровой преобразователь; 8 — компьютер; 9 — фазовый детектор тракта выделения сигнала, пропорционального глубине профиля; 10 — цифро-аналоговый преобразователь; 11 — счетчик; С0 — конденсатор с калиброванной емкостью, задающий постоянную амплитуду малого заряда ΔQ; ОУ — операционный усилитель; D — исследуемая барьерная структура.

На выходе фазовых детекторов выделяют сигналы, идущие с выхода ОУ на частотах ƒ1 и (ƒ12). По амплитуде первого сигнала определяют сечение профиля КЗЦ, отсчитываемое от края сильно легированной области диодной структуры (от границы металла барьера Шоттки или от границы диэлектрика МДП-структуры):

где UW — амплитуда выходного сигнала ОУ на частоте ƒ1.

По амплитуде выходного сигнала ОУ на частоте (ƒ12) — UN — определяют величину концентрации на краю ОПЗ — N(W):

Разделение сигналов UW и UN по сильно различающимся частотам ƒ1 и (ƒ12) облегчает техническую реализацию их выделения из uC(t).

Внешний вид установки показан на рис. 2. Блоки измерения и питания скомпонованы в типовом корпусе размером 185×135×40 мм. Вес измерительного устройства — 450 г. Разрешающая способность по глубине профиля — до 1 нм при концентрации заряженных центров до 1020 см–3. Время измерения: одна экспериментальная точка за 0,5 с, максимальное число точек — 1024.

Внешний вид установки измерения распределения концентрации заряженных центров
Рис. 2. Внешний вид установки измерения распределения концентрации заряженных центров в области p-n-перехода диодных структур

Объекты исследования

Объектами исследования были эффективные светодиодные наноразмерные гетероструктуры нового поколения с квантовыми ямами на основе AlGaN/InGaN/GaN синего и зеленого свечения (условно № 1С, № 2С и № 5Е) и AlInGaP красного и желтого свечения (условно № 3Е и № 4Е) двух зарубежных фирм-изготовителей (условно С и Е, проставленные у номера).

У этих структур измеряли распределение неподвижных заряженных центров (примеси и дефектов) в области расположения квантовых ям (в активной области), вольт-амперные характеристики (ВАХ) и отношение излучательной мощности к потребляемой — ? (коэффициент полезного действия, КПД).

Все измерения проводили в автоматическом режиме на устройствах, сопряженных с персональным компьютером.

Результаты измерений

Распределения концентрации заряженных центров для пяти типов светодиодных структур показаны на рис. 3. Отсчет глубины профиля ведется от границы сильно легированного слоя.

Профили концентрации заряженных центров в активной области светодиодных структур
Рис. 3. Профили концентрации заряженных центров в активной области светодиодных структур

Светодиодные структуры № 5Е имеют явно выраженный модулированный характер легирования потенциальных барьеров в области расположения квантовых ям. Период максимумов и минимумов концентрации там, где расположены квантовые ямы, составляет в среднем 20 нм. В зависимости от глубины профиля кратность максимумов и минимумов по концентрации составила от 5 до 2. Профили концентрации структур № 1С и № 2С оказались сверхрезкими. Отмечено, что различия по характеру профиля у структур, выполненных по одному технологическому циклу, практически не влияют на вид ВАХ, но в то же время отражаются на зависимости ? от прямого тока ?(I) (рис. 4) — одном из основных показателей эффективности светодиодов.

Зависимости КПД диодных структур от величины прямого тока
Рис. 4. Зависимости КПД диодных структур от величины прямого тока.

Зависимости ?(I) имеют явно выраженные экстремумы, характерные для светодиодов. Видно, что для AlGaN/InGaN/GaN-структур максимум ? наблюдается практически при одинаковых токах, тогда как у AlInGaP-структур он проявляется при различных токах и сдвинут в сторону их больших величин.

Как отмечалось в [1], снижение ? при больших плотностях тока связано с наличием и величиной последовательного сопротивления компенсированного слоя, расположенного в активном слое. Чем больше его величина, тем раньше начинается спад ? при росте прямого тока. Эта корреляция отражается на ВАХ исследованных светодиодных структур (рис. 5) и зависимостях ?(I) (рис. 4): более ранний отход ВАХ от экспоненциальной зависимости при росте напряжения смещения соответствует большему последовательному сопротивлению.

Вольт-амперные характеристики светодиодных структур
Рис. 5. Вольт-амперные характеристики светодиодных структур.

Величина сопротивления компенсированного слоя для светодиодных структур одного технологического цикла и на основе одного и того же полупроводникового соединения прямо пропорционально зависит от ширины компенсированного слоя Х0, которая в качестве примера отмечена на рис. 3 для структуры №3Е, и степени его компенсации. Из анализа зависимостей (рис. 3, 5) следует, что, несмотря на относительно большую (по сравнению со структурой № 5С) ширину компенсированного слоя структуры № 3Е, сопротивление ее компенсированного слоя меньше вследствие меньшей степени компенсации.

Таким образом, измерение профиля концентрации в активном слое светодиодных структур представленным методом позволяет выявить взаимосвязь их структурно-технологических особенностей с основными параметрами и характеристиками.

Выводы

  1. Представлен неразрушающий метод и устройство для измерения распределения концентрации неподвижных заряженных центров в диодных структурах, обладающий высоким разрешением по глубине профиля (до 1 нм) в широком диапазоне концентраций и градиента концентрации.
  2. Показано, что структурно-технологические различия p-n-структур светодиодов отражаются на их основных характеристиках. Представленный метод измерения концентрации заряженных центров в активной области p-n-перехода может быть использован для сертификации (паспортизации) кристаллов светодиодов и контроля стабильности технологии их изготовления.

Литература

  1. Маняхин Ф. И. Причины спада выходной мощности излучения и внешнего квантового выхода светодиодных структур AlGaN/InGaN/GaN с квантовыми ямами при больших напряжениях прямого смещения // Изв. вузов, Материалы электронной техники. 2004. № 1. С. 57–62.
xosotin chelseathông tin chuyển nhượngcâu lạc bộ bóng đá arsenalbóng đá atalantabundesligacầu thủ haalandUEFAevertonxosofutebol ao vivofutemaxmulticanaisonbetbóng đá world cupbóng đá inter milantin juventusbenzemala ligaclb leicester cityMUman citymessi lionelsalahnapolineymarpsgronaldoserie atottenhamvalenciaAS ROMALeverkusenac milanmbappenapolinewcastleaston villaliverpoolfa cupreal madridpremier leagueAjaxbao bong da247EPLbarcelonabournemouthaff cupasean footballbên lề sân cỏbáo bóng đá mớibóng đá cúp thế giớitin bóng đá ViệtUEFAbáo bóng đá việt namHuyền thoại bóng đágiải ngoại hạng anhSeagametap chi bong da the gioitin bong da lutrận đấu hôm nayviệt nam bóng đátin nong bong daBóng đá nữthể thao 7m24h bóng đábóng đá hôm naythe thao ngoai hang anhtin nhanh bóng đáphòng thay đồ bóng đábóng đá phủikèo nhà cái onbetbóng đá lu 2thông tin phòng thay đồthe thao vuaapp đánh lô đềdudoanxosoxổ số giải đặc biệthôm nay xổ sốkèo đẹp hôm nayketquaxosokq xskqxsmnsoi cầu ba miềnsoi cau thong kesxkt hôm naythế giới xổ sốxổ số 24hxo.soxoso3mienxo so ba mienxoso dac bietxosodientoanxổ số dự đoánvé số chiều xổxoso ket quaxosokienthietxoso kq hôm nayxoso ktxổ số megaxổ số mới nhất hôm nayxoso truc tiepxoso ViệtSX3MIENxs dự đoánxs mien bac hom nayxs miên namxsmientrungxsmn thu 7con số may mắn hôm nayKQXS 3 miền Bắc Trung Nam Nhanhdự đoán xổ số 3 miềndò vé sốdu doan xo so hom nayket qua xo xoket qua xo so.vntrúng thưởng xo sokq xoso trực tiếpket qua xskqxs 247số miền nams0x0 mienbacxosobamien hôm naysố đẹp hôm naysố đẹp trực tuyếnnuôi số đẹpxo so hom quaxoso ketquaxstruc tiep hom nayxổ số kiến thiết trực tiếpxổ số kq hôm nayso xo kq trực tuyenkết quả xổ số miền bắc trực tiếpxo so miền namxổ số miền nam trực tiếptrực tiếp xổ số hôm nayket wa xsKQ XOSOxoso onlinexo so truc tiep hom nayxsttso mien bac trong ngàyKQXS3Msố so mien bacdu doan xo so onlinedu doan cau loxổ số kenokqxs vnKQXOSOKQXS hôm naytrực tiếp kết quả xổ số ba miềncap lo dep nhat hom naysoi cầu chuẩn hôm nayso ket qua xo soXem kết quả xổ số nhanh nhấtSX3MIENXSMB chủ nhậtKQXSMNkết quả mở giải trực tuyếnGiờ vàng chốt số OnlineĐánh Đề Con Gìdò số miền namdò vé số hôm nayso mo so debach thủ lô đẹp nhất hôm naycầu đề hôm naykết quả xổ số kiến thiết toàn quốccau dep 88xsmb rong bach kimket qua xs 2023dự đoán xổ số hàng ngàyBạch thủ đề miền BắcSoi Cầu MB thần tàisoi cau vip 247soi cầu tốtsoi cầu miễn phísoi cau mb vipxsmb hom nayxs vietlottxsmn hôm naycầu lô đẹpthống kê lô kép xổ số miền Bắcquay thử xsmnxổ số thần tàiQuay thử XSMTxổ số chiều nayxo so mien nam hom nayweb đánh lô đề trực tuyến uy tínKQXS hôm nayxsmb ngày hôm nayXSMT chủ nhậtxổ số Power 6/55KQXS A trúng roycao thủ chốt sốbảng xổ số đặc biệtsoi cầu 247 vipsoi cầu wap 666Soi cầu miễn phí 888 VIPSoi Cau Chuan MBđộc thủ desố miền bắcthần tài cho sốKết quả xổ số thần tàiXem trực tiếp xổ sốXIN SỐ THẦN TÀI THỔ ĐỊACầu lô số đẹplô đẹp vip 24hsoi cầu miễn phí 888xổ số kiến thiết chiều nayXSMN thứ 7 hàng tuầnKết quả Xổ số Hồ Chí Minhnhà cái xổ số Việt NamXổ Số Đại PhátXổ số mới nhất Hôm Nayso xo mb hom nayxxmb88quay thu mbXo so Minh ChinhXS Minh Ngọc trực tiếp hôm nayXSMN 88XSTDxs than taixổ số UY TIN NHẤTxs vietlott 88SOI CẦU SIÊU CHUẨNSoiCauVietlô đẹp hôm nay vipket qua so xo hom naykqxsmb 30 ngàydự đoán xổ số 3 miềnSoi cầu 3 càng chuẩn xácbạch thủ lônuoi lo chuanbắt lô chuẩn theo ngàykq xo-solô 3 càngnuôi lô đề siêu vipcầu Lô Xiên XSMBđề về bao nhiêuSoi cầu x3xổ số kiến thiết ngày hôm nayquay thử xsmttruc tiep kết quả sxmntrực tiếp miền bắckết quả xổ số chấm vnbảng xs đặc biệt năm 2023soi cau xsmbxổ số hà nội hôm naysxmtxsmt hôm nayxs truc tiep mbketqua xo so onlinekqxs onlinexo số hôm nayXS3MTin xs hôm nayxsmn thu2XSMN hom nayxổ số miền bắc trực tiếp hôm naySO XOxsmbsxmn hôm nay188betlink188 xo sosoi cầu vip 88lô tô việtsoi lô việtXS247xs ba miềnchốt lô đẹp nhất hôm naychốt số xsmbCHƠI LÔ TÔsoi cau mn hom naychốt lô chuẩndu doan sxmtdự đoán xổ số onlinerồng bạch kim chốt 3 càng miễn phí hôm naythống kê lô gan miền bắcdàn đề lôCầu Kèo Đặc Biệtchốt cầu may mắnkết quả xổ số miền bắc hômSoi cầu vàng 777thẻ bài onlinedu doan mn 888soi cầu miền nam vipsoi cầu mt vipdàn de hôm nay7 cao thủ chốt sốsoi cau mien phi 7777 cao thủ chốt số nức tiếng3 càng miền bắcrồng bạch kim 777dàn de bất bạion newsddxsmn188betw88w88789bettf88sin88suvipsunwintf88five8812betsv88vn88Top 10 nhà cái uy tínsky88iwinlucky88nhacaisin88oxbetm88vn88w88789betiwinf8betrio66rio66lucky88oxbetvn88188bet789betMay-88five88one88sin88bk88xbetoxbetMU88188BETSV88RIO66ONBET88188betM88M88SV88Jun-68Jun-88one88iwinv9betw388OXBETw388w388onbetonbetonbetonbet88onbet88onbet88onbet88onbetonbetonbetonbetqh88mu88Nhà cái uy tínpog79vp777vp777vipbetvipbetuk88uk88typhu88typhu88tk88tk88sm66sm66me88me888live8live8livesm66me88win798livesm66me88win79pog79pog79vp777vp777uk88uk88tk88tk88luck8luck8kingbet86kingbet86k188k188hr99hr99123b8xbetvnvipbetsv66zbettaisunwin-vntyphu88vn138vwinvwinvi68ee881xbetrio66zbetvn138i9betvipfi88clubcf68onbet88ee88typhu88onbetonbetkhuyenmai12bet-moblie12betmoblietaimienphi247vi68clupcf68clupvipbeti9betqh88onb123onbefsoi cầunổ hũbắn cáđá gàđá gàgame bàicasinosoi cầuxóc đĩagame bàigiải mã giấc mơbầu cuaslot gamecasinonổ hủdàn đềBắn cácasinodàn đềnổ hũtài xỉuslot gamecasinobắn cáđá gàgame bàithể thaogame bàisoi cầukqsssoi cầucờ tướngbắn cágame bàixóc đĩaAG百家乐AG百家乐AG真人AG真人爱游戏华体会华体会im体育kok体育开云体育开云体育开云体育乐鱼体育乐鱼体育欧宝体育ob体育亚博体育亚博体育亚博体育亚博体育亚博体育亚博体育开云体育开云体育棋牌棋牌沙巴体育买球平台新葡京娱乐开云体育mu88qh88

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *