Выбор и расчет фильтров радиопомех на основе унифицированных дросселей предприятия АЭИЭП

№ 11’2013
В последние годы блоки питания (БП) радиоэлектронной аппаратуры (РЭА), как правило, строятся на основе высокочастотных импульсных модулей. БП на модулях имеют высокий КПД, малые габариты и массу, но, в то же время, являются источником радиопомех, уровень которых превышает допустимые значения норм. Чтобы уменьшить помехи, на входе и выходе БП размещают серийные фильтры радиопомех [12], или предприятия — разработчики РЭА сами изготавливают фильтры необходимой конструкции. Для таких фильтров предприятие «АЛЕКСАНДЕР ЭЛЕКТРИК источники электропитания» (АЭИЭП) выпускает унифицированные дроссели 170 типономиналов, которые могут работать в широком диапазоне тока и напряжения [5]. В статье показывается, как выбрать фильтр радиопомех (ФРП) на таких дросселях, а также даны рекомендации по типономиналам конденсаторов.

Помехи во входных и выходных цепях модулей питания создаются в основном силовыми ключами и диодами. Периодическая последовательность импульсов, вырабатываемая ключом, может быть представлена в виде суммы бесконечного ряда синусоидальных колебаний, кратных частоте следования импульсов. Высокочастотные составляющие этого ряда, имеющие достаточную энергию, будут определять радиопомехи по входным и выходным цепям модуля. Эквивалентная схема модуля как источника радиопомех (рис. 1) включает генератор с ЭДС — Е, внутреннее сопротивление Zi и сопротивление Zн, подключенное к его зажимам сети и играющее роль нагрузки. Чтобы уменьшить напряжение радиопомех на нагрузке, необходимо или увеличивать сопротивление Zi, или уменьшить сопротивление Zн. Наиболее часто используют и то и другое.

Эквивалентная схема источника радиопомех

Рис. 1. Эквивалентная схема источника радиопомех

Помехи, созданные источником, попадают непосредственно в отходящие от него провода, а через распределенную емкость — в соседние провода и распространяются по ним на значительные расстояния, мешая приему радиосигналов. Поэтому основная задача подавления заключается в противодействии распространению радиопомех по проводам.

Имеются два пути распространения помех: симметричный и несимметричный (рис. 2).

Пути распространения помех по проводам

Рис. 2. Пути распространения помех по проводам: Iпс — ток помехи симметричной, Iпн — ток помехи несимметричной

Так как ток симметричной помехи Iпс циркулирует только по проводам, устранить помехи от него значительно проще (достаточно конденсатора между проводами), чем от токов несимметричной помехи Iпн1 и Iпн2, распространяющихся одновременно по обоим проводам, а затем и по земле. Такие пути трудно поддаются учету, к тому же на антенны радиоприемников воздействуют электромагнитные помехи, образующиеся между помехонесущими проводами и землей, то есть за счет распространения несимметричных токов радиопомех. По этой причине нормирование радиопомех осуществляется по несимметричному пути, и необходимо в первую очередь подавлять несимметричные помехи.

На практике это осуществляется включением фильтров в провода, отходящие от источников помех. ФРП обычно выполняются по индуктивно-емкостным Г-образным схемам. Для выбора и расчета ФРП необходимо знать уровень помех, создаваемый модулем, генератором помех, допустимый уровень помех в линии, а также внутреннее сопротивление модуля Zi и сети Zн (рис. 1). Первый параметр измерить просто, второй регламентируется нормами, а два последних могут быть измерены, что затруднительно, или рассчитаны, что практически невозможно.

Можно исключить определение сопротивлений Zi и Zн если провести измерения и установить, что сопротивление генератора помех (модуля) высокоомное. Для этого необходимо измерить напряжение радиопомех во входных и выходных цепях в диапазоне частот 0,15-30 МГц. Затем, подключив на входе и выходе модуля конденсаторы (например, К10-47), обладающие минимальным значением полного сопротивления в диапазоне частот 0,15-0,5 МГц, где уровни помех особенно велики, измерить величину напряжения радиопомех в проводах входных и выходных цепей на частоте 0,15 МГц. Включение конденсаторов проводится по несимметричной схеме между каждым помехонесущим проводом и корпусом модуля.

Испытания показали, что при таком измерении напряжения радиопомех во входных и выходных цепях заметно снижаются, следовательно, модуль имеет высокое внутреннее сопротивление, и со стороны модуля фильтр должен начинаться с емкости.

Так как сопротивление Zi велико, а сопротивление Zн для большинства питающих сетей мало, то в широко известной формуле для коэффициента фильтрации Г-образного фильтра:

где значения Zн и Zi сокращаются, коэффициент Кф определяется сопротивлением индуктивности ZL и емкости ZC фильтра.

С учетом изложенного разработаны схемы входных и выходных фильтров на основе унифицированных дросселей серий ДФ, ДФК, ДФП и ДФПК предприятия АЭИЭП.

Дроссели ДФ и ДФП выполнены в бескорпусном, а ДФК и ДФПК — в корпусном исполнении (рис. 3) по двух- и трехобмоточной (только ДФ) электрическим схемам. Они рассчитаны на ток до 20 А и напряжение до 350 В и в составе LC-фильтров подавляют несимметричные помехи в диапазоне частот 0,15-100 МГц.

Дроссели фильтрации

Рис. 3. Дроссели фильтрации: а) в бескорпусном исполнении; б) в корпусном исполнении

ДФ(К) предназначены для двухпроводных сетей и по принципу работы представляют собой компенсированные по току нагрузки дроссели.

Дроссели серии ДФП(К) используются в основном для создания фильтров радиопомех в однопроводных бортсетях и за счет сердечников с распределенным зазором допускают подмагничивание проходными токами до 20 А.

Более подробно дроссели рассмотрены в [3, 5, 6]. Отметим только, что дроссели разработаны для эксплуатации в особо жестких условиях, предназначены для применения в системах электропитания аппаратуры, соответствующей ГОСТ РВ 20.39.301 — ГОСТ РВ 20.39.309, и включены в перечень МОП 44 001.12-2012.

Дроссели ДФ(К) устанавливаются согласно схемам, приведенным на рис. 4.

Схема включения дросселей ДФ и ДФК в составе LC-фильтров в двухпроводную сеть совместно: а) с одноканальным модулем питания; б) с двухканальным модулем питания с общей точкой

Рис. 4. Схема включения дросселей ДФ и ДФК в составе LC-фильтров в двухпроводную сеть совместно: а) с одноканальным модулем питания; б) с двухканальным модулем питания с общей точкой

Во входном фильтре подавление помех, распространяющихся по несимметричному пути, осуществляется дросселем L1 и конденсаторами C2 и C3. Симметричная помеха подавляется входными конденсаторами Свх. В выходном фильтре подавление несимметричных помех осуществляется дросселем L2, симметричных — выходными конденсаторами Свых.

Выбрать дроссели L1 и L2 для фильтров просто. Для наиболее массовой продукции предприятия — модулей МДМ — обозначение модулей и дросселей практически совпадает. Например, модуль мощностью 7,5 Вт с выходным напряжением 27 В обозначается как МДМ7,5-В, дроссель фильтрации для этого модуля — ДФ7,5-В и т. д. (табл. 1).

Таблица 1. Пример выбора дросселей фильтрации для установки с модулями МДМ

Тип модуля Тип дросселя фильтрации
входного выходного
МДМ7,5-1В03М ДФ(ДФК)7,5-2В/0,6;
ДФП(ДФПК)7,5-2/0,8
ДФ(ДФК)7,5-2Р/1,5;
ДФП(ДФПК)7,5-2/1,5
МДМ7,5-2Д1515М ДФ(ДФК)7,5-2Д/0,3;
ДФП(ДФПК)7,5-2/0,4
ДФ(ДФК)7,5-3Р/0,8;
ДФП(ДФПК)7,5-2/0,2
МДМ15-1А05М ДФ(ДФК)15-2А/2,0;
ДФП(ДФПК)15-2/3,0
ДФ(ДФК)15-2Р/3,0;
ДФП(ДФПК)15-2/3,0
МДМ30-2В1515М ДФ(ДФК)30-2В/2,5;
ДФП(ДФПК)30-2/3,0
ДФ(ДФК)30-3Р/1,5;
ДФП(ДФПК)30-2/0,8
МДМ30-1М05М ДФ(ДФК)30-2М/0,3;
ДФП(ДФПК)30-2/0,4
ДФ(ДФК)30-2Р/6,0;
ДФП(ДФПК)30-2/6,0
МДМ60-1М15М ДФ(ДФК)60-2М/0,6;
ДФП(ДФПК)60-2/0,8
ДФ(ДФК)60-2Р/6,0;
ДФП(ДФПК)60-2/6,0
МДМ120-1В05М ДФ(ДФК)120-2В/10,0;
ДФП(ДФПК)60-2/12,0
ДФ(ДФК)120-2Р/20,0;
ДФП(ДФПК)60-2/20,0
МДМ240-1М24МП ДФ(ДФК)240-2М/2,1;
ДФП(ДФПК)60-2/3,0
ДФ(ДФК)120-2Р/12,0;
ДФП(ДФПК)60-2/12,0
МДМ480-1М48МП ДФ(ДФК)480-2М/4,2;
ДФП(ДФПК)60-2/4,0
ДФ(ДФК)120-2Р/12,0;
ДФП(ДФПК)60-2/12,0

Для модулей остальных серий АЭИЭП и модулей других фирм дроссели выбирают по току, напряжению и индуктивности, в соответствии с таблицей 2.

Таблица 2. Ток и индуктивность дросселей

  Ток, А Индуктивность, мГн (режим измерения 1 В, 1 кГц)**
Серия ДФ и ДФК Серия ДФП и ДФПК
7,5 15 30 60 120 240 480 7,5 15 30 60
2-обмоточные 0,2 2,7(Р)*             2,86      
0,3 3,6(Д)   11(М)                
0,4 1,6(Р) 4,1(Р)           0,7 4,3 7,66 14,25
0,6 2,3(В) 4,6(Д) 8,9(Н) 8,9(М)              
0,8 1(Р) 2,4(Р) 3,6(Р)         0,26 0,9 1,68 4,2
1 1,3(А)                    
1,1         6,8(М)            
1,2   2,7(В) 4,1(Д) 4,6(Н)              
1,5 0,79(Р) 1,4(Р) 1,7(Р) 2,4(Р)       0,075 0,3 0,55 1,2
2   1,7(А)                  
2,1         4,1(Н) 4,1(М)          
2,5     2,4(В) 2,7(Д)              
3   0,9(Р) 1,1(Р) 1,4(Р) 1,4(Р)     0,019 0,075 0,13 0,3
4     1,4(А)         0,011 0,04 0,065 0,17
4,1                      
4,2           1,4(Н) 1,4(М)        
5       1,7(В) 1,7(Д)            
6     0,35(Р) 0,5(Р) 0,5(Р)         0,03 0,075
7,5             0,9(Н)        
8       1,1(А)              
10       0,35(Р) 0,5(В) 0,35(Д)          
12         0,22(Р)           0,019
16         0,22(А)           0,008
20         0,12(Р) 0,22(В)         0,005
3-обмоточные 0,1 1,9(Р)                    
0,2 1,3(Р) 2,4(Р)                  
0,4 0,79(Р) 1,7(Р) 2,4(Р)                
0,8 0,4(Р) 0,9(Р) 1,4(Р)                
1,5   0,5(Р) 0,9(Р)                
3     0,5(Р)                

Примечание.
* В скобках указано номинальное напряжение для ДФ, ДФК (А — 12 В, В — 27 В, Д — 60 В, Н — 110 В, М — 230 В, Р — 5 В), при котором нормируется падение напряжения (1%).
** В режиме измерения 1 В 150 кГц индуктивность дросселей ДФ, ДФК в четыре раза меньше; для дросселей ДФП и ДФПК ее значение не меняется.

Дроссели ДФП(К) в однопроводную борт-сеть устанавливают по схеме, приведенной на рис. 5. Подходящие модели выбирают из таблиц 1 и 2.

Схема установки дросселя ДФП(К) в однопроводную бортсеть

Рис. 5. Схема установки дросселя ДФП(К) в однопроводную бортсеть

Расчет фильтра для выбранного дросселя с индуктивностью L включает в себя следующее:

  1. Определяется требуемое ослабление напряжения радиопомех (Ктр):

    где Uп. изм — измеренная величина напряжения радиопомех, создаваемая модулем на частоте f = 0,15 МГц; Uп. доп — допускаемое напряжение радиопомех. Наиболее часто их выбирают в соответствии с графиком 2 норм по ГОСТ 30426-96.

  2. Определяется коэффициент подавления однозвенного Г-образного фильтра (Кф), который для частоты 0,15 МГц равен:

    где XL, XC — реактивное сопротивление дросселя и несимметричного конденсатора C23).

  3. Коэффициент Кф должен быть равен требуемому коэффициенту ослабления напряжения (Ктр), то есть Кф = Ктр или:
  4. По формуле (3) и значению индуктивности выбранного дросселя определяем емкость конденсаторов C2 и C3:

Пример расчета

Допустимый уровень помех

Рис. 6. Допустимый уровень помех

Исходные данные для расчета:

  1. Измеренный уровень помех, создаваемых модулем МДМ7,5-В
    (рис. 6, кривая 1).
  2. Допустимый уровень помех по нормам (рис. 6, кривая 2).

    Расчет:

    1. Выбираем для модуля МДМ7,5-В — дроссель ДФ7,5-2В/0,6 с индуктивностью 0,58 мГн (значение из таблицы 2 в соответствии с примечанием **).
    2. По кривой 1 определяем уровень помехи от модуля на частоте 0,15 МГц — Uп.изм = 94 дБ, по кривой 2 — Uп.доп. = 62 дБ. Кривая 2 соответствует уровню помех графика 2 норм, которые распространяются на бóльшую часть оборудования объектов с РЭА.
    3. Определяем по формуле (1) требуемый коэффициент ослабления фильтра в дБ:

    Выбираем Ктр с запасом — 40 дБ, или в количестве раз по формуле Ктр.дБ = 20lgКтр.раз:

  3. По формуле (4) определяем при L = 0,58 мГн емкость конденсаторов C2 и C3:
  4. В качестве несимметричных конденсаторов фильтра используем конденсаторы К10-67В, К10-47В, имеющие минимальную паразитную индуктивность. С целью дополнительного уменьшения этой индуктивности применяется параллельное соединение нескольких конденсаторов.
  5. Рекомендуемое значение емкости конденсаторов фильтров симметричной помехи в зависимости от мощности модуля питания приведено в таблице 3 [4].

Таблица 3. Рекомендуемое значение емкости конденсаторов фильтров симметричной помехи в зависимости от мощности модуля питания

Конденсатор Входное напряжение, В Выходная мощность модуля, Вт
12 27 60 110 230
Свх, Свых, мкФ 0,47-1,5 7,5
1-3 15; 30
2,2-6,8 60; 120
12-14 240; 480

В качестве симметричных применяем конденсаторы К10-67В и К10-47В, емкость которых набирается за счет параллельного соединения.

Литература

  1. Твердов И., Миронов А., Затулов С. Модули фильтрации радиопомех и защиты от перенапряжения // Силовая электроника. 2007. № 4.
  2. Твердов И., Затулов С. Модули защиты от помех // Электронные компненты. 2009. № 8.
  3. Затулов С. Дроссели для однопроводных и двухпроводных фильтров радиопомех в сетях постоянного тока // Компоненты и технологии. 2013. № 4.
  4. Руководящие технические материалы БКЮС.434732.503 Д1. Модули питания серии МДМ, МДМ-П, МДМ-ЕП, МДМ-М, МДМ-МП.
  5. Технические условия БКЮС. 670109.002-01 ТУ. Унифицированные дроссели фильтрации радиопомех серии ДФ, ДФК, ДФП, ДФПК.
  6. Руководящие технические материалы по применению унифицированных дросселей фильтрации радиопомех серии ДФ, ДФК, ДФП, ДФПК. БКЮС.300109.001 Д1, 2013.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *