Датчики. Актуальные технологии и применения датчиков автомобильных систем активной безопасности. Часть 8. Батарейные Датчики систем TPMS. Эволюция к высокоинтегрированным решениям
В восьмой части статьи подробно рассказывается о технологиях, роли датчиков и электроники для обработки и радиопередачи сигнала в системах контроля давления в шинах — TPMS (Tire Pressure Monitoring System), анализируется элементная база батарейных датчиков и электроники, предлагаемой для батарейных систем.
Все статьи цикла:
- Часть 1. Новые технологии и применения датчиков автомобильных систем помощи водителю
- Часть 2. Подробнее об элементной базе автомобильных видеокамер
- Часть 3. Элементная база датчиков света и цвета
- Часть 4. Инфракрасные тепловые камеры
- Часть 5. Ультразвуковые датчики
- Часть 6. Радары
- Часть 7. Активные ик системы: лидары, системы ночного видения, 3d — камеры
- Часть 8. Батарейные Датчики систем TPMS. Эволюция к высокоинтегрированным решениям
Введение
Основным назначением систем TPMS (Tire Pressure Monitoring System) является предупреждение водителя о недокачанной шине в автомобилях, так как дорожная безопасность, срок службы шин, топливная эффективность автомобиля в значительной степени зависят от уровня давления в колесных шинах [154–160].
Cистемами TPMS в настоящее время оснащено значительное количество новых автомобилей, так как в США и Европе разработаны специальные стандарты и законодательные рекомендации для установки систем TPMS.
История массового применения TPMS для легковых автомобилей ведет отсчет с законодательного акта TREAD — The TREAD (Transportation Recall Enhancement, Accountability, and Documentation) Act, одобренного Конгрессом США в ноябре 2000-го. Согласно акту, в автомобилях должна существовать система проверки и сигнализации о ситуации, в которой одна или более шин значительно недокачана. В настоящее время в США действует федеральный стандарт Federal Motor Vehicle Safety Standard (FMVSS) № 138, разработанный Национальной Администрацией шоссейного движения NHTSA, предписывающий обязательную установку систем TPM (Tire Pressure Monitoring) в новых автомобилях [154].
В первой редакции правила NHTSA Final Rule, принятые 5 июня 2002 г., регламентировали мониторинг недокачки всех шин более чем на 25%, более чем на 30% одной шины, а также предупреждение водителя о данной ситуации в течение 10 мин. Правила разрешали автопроизводителям устанавливать как системы прямого измерения давления в шинах, так и непрямого. Постепенное введение в действие правил осуществлялось в период с 31 октября 2003 г. до 1 ноября 2006 г.
Пересмотренные в апреле 2004 года правила NHTSA Final Rule регламентируют мониторинг недокачки любой из шин более чем на 25%, формирование предупреждающего сигнала в течение 20 мин, наличие индикатора состояния с дополнительным сбойным сигналом и применение только прямой системы измерения. Тестирование проводится на скоростях 50–100 км/ч [2]. Постепенное введение этих правил осуществлялось в период с 5 октября 2005 года и завершается 31 августа 2007 года, то есть в момент выхода статьи уже все новые автомобили США должны быть оборудованы TPMS.
В Европе параллельно разработан стандарт SAE J2567, в черновом варианте опубликованный в декабре 2004 года. Существует также международный стандарт ISO/FDIS 21750, опубликованный в марте 2006 года. Эти два стандарта поддерживают базовые требования FMVSS № 138, но охватывают спецификации TPMS более широко, чем FMVSS № 138, например, оба разрешают применение и прямых, и непрямых систем контроля давления. Стандарт SAE J2567 в общем виде соответствует FMVSS138, но процентное соотношение давления, по которому шина диагностируется как значительно недокачанная, не устанавливается, срабатывание регламентируется в течение 10 мин, минимальная скорость работы — на 24 км/час.
Стандарт ISO/FDIS 21750 наиболее широко охватывает спецификации TPMS, в частности, регламентируется точность порядка 2% полной шкалы в температурном диапазоне от 0 до 70 °C, минимальный срок службы порядка 6 лет/100 000 км, допускается мониторинг запасной шины. В стандарте отсутствуют требования для определения движения колеса, но тестирование выполняется на скоростях >25 км/ч, предупреждающий сигнал о давлении подается в течение 3 мин, предупреждение о сбое — в течение 10 мин.
TPMS должны также соответствовать требованиям Федеральной комиссии по связи — Federal Communications Commission (FCC) и Европейского Института Стандартов для коммуникаций — European Telecommunications Standards Institute (ETSI). Рабочие радиочастоты для TPMS и RKE (Remote Keyless Entry) выбираются в нелицензированных частотных диапазонах ISM 315–434 МГц и 868–930 МГц. Для TPMS, совмещаемых с RKE-ресивером, ожидается использование частот ISM 315 МГц для США и 434 МГц для Европы.
В странах Азиатско-Тихоокеанского региона пока нет подобных стандартов, но в Японии и Корее TPMS должны соответствовать стандартизированной радиочастоте — 434 МГц.
Ввиду рыночной ситуации автопроизводители всех стран стремятся опережающими темпами внедрять системы TPMS в свои новые автомобили, а производители автоэлектроники — разрабатывать все более конкурентоспособные «продвинутые» системы. Спецификации TPMS, разработанные такими ведущими производителями, как Siemens-VDO, EnTire Solutions LLC (совместное предприятие TRW Automotive и Michelin), ShraderBridgeport (www.schrader-bridgeport.com) и других, перекрывают требования вышеназванных стандартов. Системы TPMS — это большой потенциальный рынок для сбыта датчиков давления, непосредственно выполняющих измерительные функции, и сопутствующих устройств, причем в связи с высокой конкурентной борьбой за рынок TPMS производители датчиков также предлагают все более эффективные технологические решения, обзор которых является основной целью данной статьи.
Прямые и непрямые системы измерения
В соответствии со стандартом FMVSS № 138 NHTSA предписывает использование так называемой прямой системы проверки давления шины, согласно которой четыре датчика или модуля прямого измерения давления, установленные в каждом колесе, периодически посылают радиосигналы к ресиверу, размещенному на приборной панели. Для таких систем TPMS обязательным требованием является также батарейное питание датчиков.
Компания Toyota, например, выбрала EnTire Solutions LLC (http://www.entiresolution.com/) в качестве основного поставщика систем прямого мониторинга TPMS автомобилей Sienna, выпускаемых с этого года. EnTire работает как совместное предприятие с TRW Automotive (http://www.trwauto.com/) и Michelin (http://www.michelin-us.com/), являясь также поставщиком TPMS для автомобилей Honda, Hyundai, Kia и Fiat.
Системы прямого мониторинга TPM от EnTire Solutions включают батарейный датчик давления, установленный на клапанном штоке в колесе (рис. 83). Датчик поставляет информацию о давлении и температуре для автомобильного ресивера в кабине посредством радиосигнала.

Сенсорная часть любой такой прямой системы TPMS представляет собой модуль, включающий датчик, электронику обработки сигнала, трансивер (трансмиттер, передающий радиосигнал давления, и ресиверполучатель команд от системы считывания на приборной панели), источник питания (обычно малая батарея), локализованные в узле каждой из четырех шин колеса.
Основные измерительные функции выполняет емкостной или пьезорезистивный MEMS датчик давления, дополняемый, как правило, датчиком температуры, а также, в расширенных версиях, датчиками движения (ускорения) и напряжения питания устройства. Важными требованиями к датчикам являются низкая цена ($5–6 на модуль), срок службы батареи — свыше 10 лет, RFI/EMI-совместимость, высокая надежность в условиях повышенных температур, ударов, вибраций. Эти и другие параметры лежат в основе сравнительного анализа модулей, представленных в настоящем обзоре.
Установленный в приборной панели считывающий блок информирует водителя о состоянии каждой шины. Для этого каждая прямая система TPM содержит высокочастотный RF-передатчик (UHF; 300 МГц – 1 ГГц), который передает информацию водителю на переднюю панель и микроконтроллер.
Система Pressure-on-Demand (PoD) представляет собой систему типа master/slave, которая в дополнение к прямому измерению включает встроенный LF-канал (125 кГц), пробуждающий сенсорный модуль с определенным рабочим циклом.
Существует также концепция Tire IQ — интеллектуальной системы контроля давления в шинах, предполагающей использование двунаправленной LF-коммуникации и безбатарейной работы датчиков.
Помимо прямой проверки давления существуют также косвенные методы, с помощью которых вычисляют давление шины с учетом других параметров, используя систему АБС, включая датчики скорости колес и (или) акселерометры, и локальный компьютер. Если давление в шине колеса становится низким, данное колесо будет вращаться быстрее, чем другие колеса, в связи с уменьшением его радиуса. Различия в скорости позволяют детектировать низкое давление, предупреждающий индикатор будет сигнализировать об этом водителю, но эти многопараметрические методы сложно реализуемы и требуют периодической калибровки. У непрямых систем есть преимущество — низкая цена, так как не требуются батарейные датчики и системы радиопередачи. Но они не могут определять давление шин перед стартом, диагностировать состояние запасной шины, двойных шин в одном узле, имеют ограничения в скорости, ускорении и траектории движения, для них не существует понятие точности абсолютных измерений, и они способны детектировать «недокачку» только более 30%. Хотя такие системы разрабатываются — примером является Deflation Detection System (DDS) от Continental.
Зачем это нужно?
Результаты исследований, которые регулярно проводит Национальная Администрация Шоссейного Движения (NHTSA), показывают, что 27% пассажирских автомобилей и 32% грузовиков в США обычно содержат по крайней мере одну значительно недокачанную (на 25%) шину, 13% автомобилей и 20% грузовиков имеют две недокачанных шины, а 20% шин накачиваются на 40% ниже оптимального. Согласно NHTSA, ежегодно 79% смертей и 10 635 травм могли бы быть предотвращены, если бы все пассажирские автомобили и легкие грузовики были оборудованы системой TPMS.
Проверка предназначена не только для обнаружения спущенной шины. Давление шины непосредственно связано с автомобильной безопасностью [156, 159–160]. Недостаточное давление шины может привести к таким последствиям, как:
-
- снижение управляемости (ситуации under steering вследствие низкого давления передней шины и over steering вследствие низкого давления задней шины);
- значительное уменьшение срока службы шины вследствие перекачки или недокачки (отклонения в 0,4×105 Па1 — на 20% более низком от оптимального давления — соответствуют потере 30% срока службы);
1 ×105 Па ≈ 1 атм. или 1 бар
- недокачка на каждые 0,6×105 Па увеличивает потребление топлива примерно на 4%;
- при снижении воздушного давления от 2,5 до 1 бар должно прикладываться сцепление примерно на 3% более и дополнительно на 30% более при снижении давления от 1 до 0,5 бар;
- гидропланирование на мокрых участках (глубина воды >2 мм), более выраженное на высоких скоростях (выше 100 км/ч) — ухудшение приблизительно до 1,5 бар, затем улучшение — вследствие вдавливания протектора внутрь при номинальной нагрузке);
- снижение на 0,5 бар дает увеличение в сопротивлении качению порядка 15%;
- недокачка шины на 50% (1,2×105 Па вместо 2,4×105 Па) на скоростях более 100 км/ч увеличивает расстояние торможения автомобилей с АБС до 10 м;
- снижение на 0,5 бар дает ухудшение порядка 15 км/ч в максимальной достижимой скорости без сбоев при испытаниях на долговечность;
- сопротивление столкновению с бордюром (снижение на 0,5 бар ведет к разрушению на сниженных на 20% скоростях по сравнению с обычными);
- предельное значение для сбрасывания с обода лежит между рабочим давлением и 1–1,2 бар; для безопасности оно должно быть ниже;
- шум протектора: отклонение в 1 бар от нормального давления (2–2,5 бар) ухудшает уровень шумов на 2 дБ(А) (66%);
- отклонение в 0,2 бар от одной оси в автомобилях среднего класса является заметным;
- некорректное давление шины мешает управлению подвеской.
Многие ведущие производители представили на рынок свои разработки TPMS, различных компонентов и модулей для прямого измерения давления шин и беспроводных технологий радиопередачи сигнала.
Современное состояние датчиков контроля давления в шинах и сопутствующих устройств (для прямых систем)
Концепция 1: максимальная интеграция электроники для обработки и передачи сигнала (микроконтроллер + RF-трансмиттер + LF-ресивер + датчики температуры + IP-функциональность управления питанием)
Стандартная архитектура системы TPMS состоит из:
- четырех колесных модулей измерения давления, каждый из которых включает:
- датчик измерения давления (CMOS/MEMS);
- датчик температуры;
- блок формирования сигнала и идентификации шины (на основе микроконтроллера и EEPROM);
- трансмиттер, передающий радиосигнал (RF-диапазона) на приборную панель;
- RF-антенну;
- кристаллический (кварцевый) резонатор;
- батарею;
- ресивера в приборной панели;
- блока обработки сигнала в приборной панели.
Для стандартных TPMS могут использоваться любые, способные работать от батареи MEMS датчики, рассчитанные на данный диапазон давления (для большинства легковых автомобилей нормальное давление — это 2–2,5 бар, диапазоны измеряемых давлений для грузовиков — до 1400 кПа). При этом схема обработки сигнала и RF-трансмиттер по отношению к сенсорному модулю могут быть и внешними. Для того чтобы обеспечивать частотный контроль трансмиттеров и ресиверов, применяются кристаллические (кварцевые) резонаторы, а RF-передачи выполняются посредством рамочной антенны. Все эти элементы формируют удаленный сенсорный модуль, обычно устанавливаемый на ободе колеса, в центре снижения или на клапанном штоке. В будущем не исключена возможность его монтажа непосредственно на шине.
Но необходимо учитывать, что MEMS датчик давления, ASIC-схема и RF-трансмиттер должны работать в жестких условиях окружающей среды, включающей перепады температур с внешней стороны колеса от –40 до +50 °C и от –40 до +125 °C внутри шины (с частыми кратковременными перегревами до +175 °C и даже до +900 °C), удары, вибрацию, центростремительные ускорения порядка 2500 g, загрязнения, влажность, электромагнитные помехи, интерференцию с TPMS соседних автомобилей и т. д. Требуемая точность измерения — порядка 8–10 кПа с разрешением в 1–2 кПа в стандартном диапазоне давлений шин легковых автомобилей до 450 кПа (с учетом перепадов температур, разряда батареи и других факторов, влияющих на измерения).
Чтобы рекомендовать датчик для колесных модулей TPMS, производители разрабатывают технологию производства MEMS-датчика давления еще на уровне микроэлектроники.
Два обычных метода, используемых для создания MEMS-ячеек — пьезорезистивный и емкостной.
Например, компания Kavlico разработала однокристальный емкостной сенсорный элемент, производимый по технологии КМОП и совместимый с RF-трансмиттерами. Емкостная технология позволяет уменьшить энергопотребление, а интегрированный датчик температуры дает возможность осуществить температурную компенсацию измерения давления. Датчик Kavlico работает при напряжении в 1,8 В, поэтому можно использовать индуктивную антенну и батареи.
MEMS-ячейка давления датчика SP30 Infineon (в связи с его более высоким уровнем интеграции об этом датчике подробно рассказывается далее) выполнена на кремнии как вакуумная измерительная ячейка с диафрагмой, изгибаемой под действием давления, которое измеряется в мостовой пьезорезистивной схеме. Производство ячейки основано на методах объемной микромеханики, включающих процессы фотолитографии, ионной имплантации, жидкостного и сухого травления, анодного соединения в тройной стэк— для формирования вакуумной опорной камеры. Закорпусированное устройство рассчитано на встраивание в обод колеса.
Компания Freescale для своих датчиков TPMS использует технологию CMOS и емкостной метод измерения абсолютного давления с двумя p-ячейками — сенсорной и опорной (см. далее). Для защиты поверхностных MEMS-структур применяются гелевые покрытия или выборочная герметизация, как в MPXY8300. Емкостная технология помимо малого энергопотребления позволяет добиться высокой точности и интегрировать двухосевой акселерометр [156].
Сенсорный элемент подключается к ASIC, формирующей сигнал для его передачи посредством RF-трансмиттера — драйвера антенны.
ASIC часто включает датчик температуры, который используется для компенсации основных измерений давления с целью повышения точности, а также надежности работы TPMS, блокируя систему в случае резкого повышения температуры выше 125 °C. Косвенно повышенная температура также указывает на снижение давления и/или неисправность тормозной системы, вызывающей перегрев.
В PoD-системе для каждой шины дополнительно добавляется LF-канал опроса датчика, и, следовательно, в схеме приборной панели будут присутствовать LF-трансмиттеры и антенны, а в составе каждого из четырех сенсорных модулей с LF-ресивером включаются обмотки транспондера, например, производства EPCOS (www.epcos.com/transponder).
Опрос по требованию, причем с определенным рабочим циклом, позволяет повысить срок службы батареи. Для управления питанием также важно, чтобы система переходила в неактивный режим, если нет движения колес, для обнаружения которого в сенсорной части колес используется акселерометр. В активный режим датчик переходит при движении автомобиля и увеличивает скорость повторения для прочтений давления.
Энергосбережение — важный аспект конструирования колесного модуля TPMS, не предполагающего замену батареи в течение, как минимум, 10 лет. Для минимизации размера и веса сенсорного элемента размер батареи желательно уменьшать, но это ограничивает емкость батареи, срок ее службы и доступный уровень потребления тока. 10 лет, что равняется 87 600 часам работы датчика и трансмиттера TPMS, к примеру, могут обеспечить батареи с емкостью 220 мА·ч, при непрерывном потреблении тока в среднем 2,5 мкА (пример взят из [161]).
Оптимизированный выход предполагает высокое качество сигнала, устойчивого к помехам, при этом срок службы батареи должен быть максимально продлен. Поскольку наибольшее потребление тока наблюдается в течение RF-передачи — примерно в пять раз выше, чем в режиме измерения давления, имеет смысл передавать сигналы не часто и использовать короткие и достаточно высокоскоростные передачи — то есть применять неактивный и активный режимы. В неактивном режиме непрерывно потребляет ток только RC-генератор для сторожевого таймера, который в среднем с учетом утечки составляет 400 нА, что за 10 лет службы может допустить использование тока порядка 2,8 мкА в активном режиме [161]. Для уменьшения помех производители стремятся сокращать время передачи и увеличивать скорости передачи данных в бодах (baud rates), осуществляя многократные передачи в нерегулярных интервалах. Siemens VDO для уменьшения помех дополнительно использует поглотитель вибрации в специальном корпусе, который прикрепляется к ободу колеса (пример взят из [157]). Но с более высокими скоростями передачи битов в короткий период времени возрастает вероятность ошибки, что требует повышения интеллектуальности передач.
Различные разработки электроники для TPMS представили, например, компании Atmel (ATA6285/6286 и другие), MAXIM (RF-ресивер MAX7042), AMI Semiconductor (RF-трансиверы серии AMIS-52000), NXP Philips (TPMS c PCH7970) [162].
Так, компания Atmel представила ИС для прямых батарейных TPMS с различной и достаточно высокой степенью интеграции. Линейка продукции включает RF-трансмиттеры, LF-трансмиттеры и ресиверы, предназначенные для работы с отдельными флэш-микроконтроллерами, также представленными в линейке, и высокоинтегрированные RF-трансмиттеры — флэш-микроконтроллеры: UHF-трансмиттеры на 315 и 433 МГц (ATA5756/5757), UHF-ресиверы для приборной панели (RKE/TPMS) на 433 и 315 МГц (ATA5745/ATA5746), UHF ASK/FSK трансиверы ATA5811/12, трансмиттер-драйвер LF-антенны ATA5276 на 125 кГц, LF-ресивер ATA5283, флэш-микроконтроллеры ATAM893 и ATAR890/2, ИС трансмиттеров на микроконтроллерной основе ATA6285/6286 на 315 и 433 МГц. Все ИС характеризуются малым энергопотреблением для повышения срока службы батареи.
ном модуле реализуются посредством ресиверов ATA5745/ATA5746 с очень быстрым переключением между TPMS и RKE и мультикристального модуля ATA6602 c интегрированным микроконтроллером AVR. Стандартная система TPMS с ИС от Atmel показана на рис. 84а, которая с дополнением LF-канала на 125 кГц и ИС трансмиттеров ATA5276 может быть преобразована в PoD-систему (рис. 84б).

Желательно, чтобы, по крайней мере, одна ASIC объединяла все интеллектуальные и RF-функции датчика. Поэтому для сенсорной части TPMS согласно концепции Atmel рекомендованы микроконтроллерные RF-трансмиттеры ATA6285/6286, с дополнительными внешними элементами колесного модуля TPMS, показанными на рис. 84в, включая в стандартной системе датчики, батарею, RF-антенну и резонатор. В PoD-системе для каждой шины дополнительно добавляется LF-ресивер и обмотка транспондера. Степень интегрирования ИС ATA6285/6286 достаточно высокая (рис. 84г): в ИС включены RF-трансмиттер, LF-ресивер, микроконтроллер, датчик температуры и функции управления питанием.

Для сбережения питания Atmel Corp., как и другие фирмы, производит устройства, пробуждающие датчик сигналом на 125 кГц с определенным рабочим циклом. Это позволяет повысить срок службы батареи. Дизайн от Atmel (ATA6285/6286) включает wakeup-канал, микроконтроллер и различные RF-схемы, в том числе UHF ASK/FSK.
Philips Electronics (NXP) фокусирует свои проекты на аспектах обработки сигнала считывающей схемой. Предполагается, что считывание сигналов о давлении шин и RKE осуществляется посредством одного ресиверного блока в приборной панели. ИС семейства P2SC обеспечивает связь между HMI и сенсорным модулем шины, осуществляя LF-опрос и RF-возврат с информацией о состоянии каждой шины всякий раз перед стартом, обновляя эту информацию в процессе вождения. Если давление падает ниже установленной нормы, система автоматически сообщает об этом водителю. В управляющем блоке TPMS/RKE задействуются ИС PCF7951 и PCF7943/41.
Первым представителем семейства P2SC является PCH7970 (рис. 85) — однокристальное устройство для сбора данных и обработки сигнала для TPMS на основе маломощного 8-битного RISC ядра (MRKII) с несколькими портами ввода/вывода для контроля внешней схемы и 12-битным АЦП для снятия мостового сигнала с пьезорезистивного датчика давления. К устройству могут подсоединяться два мультиплексируемых датчика. В колесный модуль с PCH7970 включаются датчики давления, ускорения, батарея, резонатор и антенны. ИС включает 128 байт EEPROM, 128 байт RAM, 4 кбайт E-ROM, 4 байт ROM (для 32-битного ID). Монтаж чипа PCH7970 предполагается на ободе колеса, что отражено в спецификации устройства (практически все ИС для TPMS рассчитаны на температуру –40…+125 °C). Встроенный датчик температуры используется для температурной компенсации пьезорезистивного моста и контроля нежелательного перегрева шин (термоблокировки устройства).

Чип способен также детектировать малый заряд батареи. Срок службы ИС повышается за счет использования режимов power down с минимальным среднеквадратическим током и 3D-LF интерфейса для опроса типа wake-up с независимыми периодическими программируемыми временными интервалами от встроенного таймера.
Встроенный микроконтроллер с архитектурой одноуровневых прерываний и малым энергопотреблением функционирует на 400 мкА с токами в режиме ожидания 30 мкА и 200 нА в режиме power down. Последовательная передача данных осуществляется в пределах времени выполнения инструкции (0,5 мкс). Для тактирования применяется RC-генератор с программируемой системой работы на частотах до 2 МГц.
Уровень потребления тока, размер, надежность и цена являются важными характеристиками, которые стремится обеспечить для колесных модулей TPMS компания AMI Semiconductor. Она разрабатывает и производит линейку беспроводных коммуникационных RF-решений для TPMS, совмещаемых с RKE-ресивером, на нелицензированных частотах ISM 315 МГц для США и 434 МГц для Европы. В разработках AMIS сделан акцент на повышение интеллектуальных свойств управления питанием.
Для сбережения мощности компанией AMIS дополнительно разработаны схема “quick start crystal oscillator”, представляющая собой схему настройки кристаллического резонатора с быстрым временем перехода к рабочей точке — 5–10 мкс вместо типичных для кварцевых резонаторов 5–10 мс, маломощные АЦП, маломощный режим AMIS sniff mode с малым временем wake-up, интеллектуальная схема, сокращающая число RF-передач. Надежность работы также повышается — за счет того, что в ИС интегрируются IP-блоки и такие компоненты, как нагрузочные конденсаторы, компоненты фильтра Phase-Locked Loop (PLL) и датчик температуры.
AMIS-52000 — это узкополосный маломощный однокристальный трансивер с модуляцией ASK/OOK (Amplitude Shift Keying/On-Off Shift Keying), предназначенный для работы на 433,92 МГц (260–700 МГц), работающий в полудуплексном режиме со скоростью передачи данных 1–19,2 кбит/с. В маломощном программируемом режиме sniff mode на частотах 390–460 МГц AMIS-52000 время между опросами программируется — с целью продлить срок службы батареи. В ИС встраивается маломощный осциллятор. Для снижения проблем надежности передачи в AMIS-52000 используется двойная антенна, не требующая для функционирования внешнего микроконтроллера и RF-переключателя.
AMIS-52150 — недорогой и так же подходящий для TPMS трансивер на основе технологий модуляции ASK/OOK AMIS-52000 с восстановлением команд тактирования и данных, работающий в узком частотном диапазоне 350–448 МГц.
Для снижения цены TPMS за счет повышения интеллектуальности передачи AMIS использует 0,35-микронный процесс и технологию смешивания сигнала, допускающую добавление модуля EEPROM, но микроконтроллер для всех этих ИС предполагается внешний.
AMIS-53150 — новый быстрый трансивер для автомобильных (TPMS/RKE) и промышленных применений, работающий на частотах 300–960 МГц и поддерживающий модуляцию FSK/GFSK/OOK. Ключевым признаком, помимо многих общих с серией 52000, является возможность периодической посылки данных в режиме Burst mode (рис. 86).

В Burst-режиме возможна посылка до 4 параметров с указанием сбойного состояния для каждой передачи, причем устройство способно работать автономно, без помощи внешнего микроконтроллера. Программирование конфигурации Burst осуществляется в перепрограммируемой памяти; опции предполагают проверку циклического кода и адресацию устройства. AMIS-53050 может программироваться для пробуждения из режима Stand by, выполнять два независимых измерения и/или два внутренних измерения АЦП и потом передавать эту информацию по запрограммированному в чипе адресу. Внешний вывод может переключаться для индикации тревожного состояния и ускорять преобразование данных и RF-передачу.
Дальнейшее развитие своих технологий с целью минимизации системной цены компания AMIS видит в интеграции MEMS-датчиков с ИС трансмиттера, но не в однокристальном исполнении (так как MEMS-устройства занимают значительные объемы, хотя и не сложны в исполнении), а с добавочной CMOS ASIC (мультикристальное исполнение позволяет снизить цену по сравнению с технологией смешивания сигнала).
Концепция 2: повышение степени интеграции датчиков
Характерно, что новые системы TPMS отличаются все большей функциональностью, интеллектуальностью и реализацией мультисенсорных и микросистемных технологий Systemin-Package (SiP). По пути повышения степени интеграции колесных модулей, максимального объединения измерительных и системных функций идут практически все производители датчиков, что иллюстрируют примеры разработок компаний Bosch (SMD400), Infineon (SP12, SP12T, SP30/35), Freescale (MPXY8300).
Объединение MEMS-датчика и ряда ASIC-функций в одном интегральном корпусе осуществлено в датчике TPMS от MLX90603 Melexis.
Системные компоненты, которые в одном интегрированном корпусе включают сенсорный модуль TPMS, согласно концепции, разработанной Melexis, — это мостовой пьезорезистивный датчик давления на кремниевом чипе размером 1×1×0,5 мм, датчик температуры, ASIC, включающая LF-ресивер, Flash, RAM, ROM, EEPROM. Но Roll-датчик (акселерометр), RF-трансмиттер, LF-антенна, батарея, а также другие пассивные компоненты предполагаются внешние. Коммерчески доступный датчик давления в шинах MLX90603 осуществляет функции мониторинга давления, температуры и напряжения, ASIC включает 16-битное RISC-ядро, программируется в EEPROM и совмещается с большинством RKE-протоколов. Устройство устойчиво к ударам до 2000 g, рабочий температурный диапазон — –40…+125 °C.
Компания Melexis также выпускает и разрабатывает широкую линейку RFIC для работы на частотах от 27 до 950 МГц — трансмиттеры и ресиверы, трансиверы и клиентские ASIC для нелицензированных полос ISM 315–434 МГц и 868–930 МГц, в том числе для TPMS и RKE. Согласно заявлениям компании, в дальнейшем ожидается интегрирование акселерометра в корпусе контроля давления шин и развитие концепции устройств уровня System-in-Package.
Компания Bosch разработала двухкристальные модули контроля давления шин серии SMD400 с беспроводными коммуникационными функциями, включающие сенсорный модуль и клиентскую ASIC (рис. 87). Выходные данные сенсорной части датчика SMD400 — давление, температура, напряжение. Стандартный диапазон измерения давления модулей SMD410/420/430/440 — 1–627,5 кПа. SMD410T, разработанный для тяжелых грузовиков, измеряет давление в диапазоне 0,1–1,4 МПа. Принцип измерения давления — пьезорезистивный, с оцифровкой данных от датчиков посредством 12-битного АЦП.

Уровень интеграции устройства достаточно высокий. ASIC включает цифровое ядро с запрограммированными алгоритмами, RF-трансмиттер, LF-ресивер и выходную ступень для формирования цифрового SPI-интерфейса. Скомпенсированное с учетом температуры и диапазона значение давления вычисляется посредством запрограммированных алгоритмов и коэффициентов, хранящихся в памяти ASIC.
Для работы датчика требуется внешняя батарея, RF-антенна и кристаллический резонатор для тактирования встроенного в ASIC 8-битного микроконтроллера. Опционно в батарейный модуль может включаться датчик движения — roll switch (порт для его подключения доступен в SMD410/420 и SMD410T) или интегрированный акселерометр (SMD440) и LF-антенна.
Даже ранние датчики контроля давления в шинах SP12 от Infineon комбинируют в ASIC-корпусе не только кремниевый микромеханический датчик давления (100–450 кПа), интегрированный датчик температуры (–40…+125 °C), датчик напряжения питания (1,8–3,6 В), но и одноосевой акселерометр (12–115 g). Датчик SP12T, который сконструирован для тяжелых грузовиков, измеряет давление в диапазоне 50–1400 кПа, но отличается от SP12 отсутствием акселерометра. Датчики SP12 и SP12T включают мультиплексор сигналов со всех сенсорных ячеек (датчиков давления, температуры, ускорения, напряжения), АЦП, поддерживают возможность калибровки с OTPROM и формируют цифровой интерфейс SPI для коммуникации с внешним микроконтроллером максимальной частотой 500 кГц. SP12 и SP12T обеспечивают два специальных выхода — WAKEUP и RESET, которые могут использоваться для прерывания или сброса внешнего микроконтроллера. SP12 включает два осциллятора: маломощный для работы с частотами порядка 2,5 кГц и тактирования интервалов, и 2-мегагерцовый тактовый генератор для измерений и передачи данных.
Новые датчики Infineon выполняют практически все измерительные функции (давления, температуры, радиального ускорения, напряжения питания батареи), рассчитаны на работу не только в жестких окружающих условиях, но и допускают высокие объемы массового производства TPMS, отличающихся низкой ценой.
Модуль SP30 Infineon (рис. 88а) представляет собой датчик давления уже третьего поколения, с различными диапазонами давлений, измеряемых сенсорным элементом — от 100 до 450/700/800/900/1400 кПа и более высокого уровня интеграции. SP30 допускает большую гибкость при его интегрировании в клиентские системы. ASIC SP30 интегрирует RISC-микроконтроллер для обработки данных от датчиков давления, температуры, ускорения, напряжения питания и для формирования протокола данных. Протокол передается через внешний UHF-трансмиттер (например, компанией рекомендуются TDK5100 или TDK5101). Устройство в малом печатном корпусе DSO14 приблизительно 104,5 мм2, включает также входную интегрированную LF-ступень (для опроса датчика).

Модуль SP35 (рис. 88б) — еще более высокоинтегрированное сенсорное устройство TPMS, представляющее собой ИС в корпусе P-DSOSP-14-6, кроме датчиков давления, температуры, ускорения, напряжения, включающее встроенный микроконтроллер 8051, ASK LF-ресивер на 125 кГц и трансмиттер FSK/ASK на 315/434 МГц. Диапазон входного давления 100–450 кПа, измеряемого объемным MEMS-датчиком давления, причем точность измерения давления в диапазоне рабочих температур 0…+70 °C не превышает ±10 кПа.
Кроме датчиков, микроконтроллера 8051, трансмиттера и ресивера основные функциональные признаки SP35 включают: наличие интегрированной флэш-памяти в 6 кбайт, 256 байт RAM, контроль питания/режим wake-up, выбираемая мощность 5 или 8 дБм.
Компания Freescale Semiconductor уже сегодня предлагает производителям максимально интегрированные датчики для колесных модулей TPMS новой серии MPXY8300 (рис. 89), ориентировочно коммерчески доступные в четвертом квартале 2007 года.

Ранее компания Freescale выпускала модули серии MPXY8000 (MPXY8020A, MPXY8040A, MPXY8021A) — интегральные однокристальные цифровые датчики давлений в стандартных диапазонах 250–450 кПа (MPXY8020A) и 500–900 кПа (MPXY8040A). Эти датчики реализованы по стандартной КМОП-технологии и включают поверхностную микромеханическую емкостную ячейку измерения давления и EEPROM, а также датчик температуры и интерфейсную схему, размещенные на одном чипе. Устройства совместимы со многими технологиями Freescale RKE, но для их функционирования необходим внешний микроконтроллер.
В связи с повышающимися требованиями современного автомобильного инжиниринга компания Freescale Semiconductor уже представила на рынок автомобильных компонентов конкурентоспособную технологическую инновацию уровня System-in-Package, предназначенную для систем TPMS с ограниченным пространством и позволяющую также снижать системную цену [3]. Новая серия датчиков для TPMS MPXY8300 Freescale представляет собой высокоинтегрированное полупроводниковое мультикристальное решение, которое в 20-выводном корпусе SOIC20WB включает следующие основные элементы (рис. 89а, б): емкостной поверхностный MEMS-датчик давления, интегрированный 8-битный микроконтроллер и RF-трансмиттер. 8-битный MCU снабжается памятью в 512 байт RAM и 8 кбайт Flash. Интегрированный RF-выход с PLL функционирует на частотах 315/434 МГц. Так же, как и его предшественники, устройство совместимо с существующими системами удаленного доступа (RKE).
К другим элементам и функциям датчиков серии MPXY8300 относятся встроенный датчик температуры, множественные схемы скорости передачи и модуляции, двухканальный LF-вход с детектором/декодером, блок измерения напряжения питания, акселерометр для определения движения колеса, выключение при перенагреве, маломощный сторожевой таймер для выхода из спящего режима wakeup timer и драйвер периодического сброса посредством LFO, адаптивное управление питанием для продления срока службы батареи TPM, а также уникальный дизайн фильтра для защиты сенсорного элемента от воды и химикатов.
Уровень системной интеграции, реализованной в датчиках серии MPXY8300, требует минимальное число внешних компонентов, что снижает системную цену и цикл разработки TPM. Для различных применений серия датчиков MPXY8300 программируется.
Диапазоны давлений, измеряемые датчиками серии 8000 в корпусе SSOP 8, ранжированы в пределах 50–637,5 кПа и 50–900 кПа. Диапазоны давлений, специфицируемые для датчиков серии 8300, определены в 100–450 кПа и 100–900 кПа, возможны и другие диапазоны по клиентскому требованию. Основное отличие серии 8300 от серии 8000 датчиков TPM то, что, за исключением датчика температуры, который в MPX8000 также является встроенным, все остальные встроенные функции MPX8300 при использовании MPX8000 потребуют внешних компонентов: внешнего микроконтроллера (MCU RF2/QF4), совмещающего функциональность обработки сигнала с датчиком напряжения, UHF-трансмиттера, внешнего LF-ресивера и декодера. MPXY8300 — весьма конкурентоспособное решение и в сравнении с датчиками для TPMS других производителей.
Сравнительные технические данные датчиков приведены в таблице.

Концепция 3: батарейные или безбатарейные TPMS
Все системы, рассмотренные ранее, представляли собой батарейные. Различают три вида батарей для модулей TPMS — литиевые дисковые батареи, на основе диоксида литий-марганца (Li/MnO2) и батареи на основе Li/CFX. Емкость многих батарей составляет 500 мА·ч и более.
Типичные батарейки для датчиков представляют собой ячейку на основе диоксида литий-марганца (Li/MnO2) — например, те, что производит Maxell Corporation of America CR2450-HR и CR2450HR-EX.
Безбатарейные системы первого типа предполагают использование передачи энергии для питания датчика, и при таком подходе опрос по требованию и идентификация шины являются стандартными функциями системы TPMS, но цена трансиверов на данный момент относительно высокая. Второй тип безбатарейных TPMS получает энергию от движения колеса, но сбор энергии — также более дорогостоящий метод по сравнению с использованием батареи, что подходит для автомобилей верхнего рыночного сегмента.
Разработаны следующие концепции:
- использования передачи LF-энергии для питания датчика, который, накопив энергию, делает измерения и передает RF-сигнал;
- поглощения энергии (использование для питания датчика энергии передаваемого колесным трансивером RF или LF-сигнала, при этом сенсорные данные модулируют передаваемый сигнал, и модуляция извлекается трансивером, причем цена трансиверов, устанавливаемых в шине, в будущем может быть ниже, чем у батареи);
- генераторов (электромагнитных, термоэлектрических, пьезоэлектрических).
Тем не менее, для потребителя цена эксплуатации батарейных TPMS может оказаться более высокой — в связи с заменой батарей или модулей, а безбатарейные TPMS в теории отличаются неограниченным сроком службы, что неизбежно приведет в будущем к снижению цены.
Безбатарейные TPMS разрабатывает и предлагает на автомобильный рынок SmarTire Systems Inc. (мониторинг давления, температуры, числа оборотов колеса). Пассивный датчик питается от антенны, что позволяет снизить вес, размер и цену, теоретически повысить срок службы и надежность устройства. Alps Electric Co. разработала безбатарейную TPMS, основываясь на технологии IQ-mobil GmbH. Беспроводное ВЧ-устройство от Alps включает трансивер и транспондер, который использует энергию сигнала трансивера для передачи данных от датчика давления и температуры.
Заключение
Безбатарейные решения востребованы в будущем, а в настоящем приоритет остается за высокоинтегрированными батарейными датчиками с ASIC-функциями, для которых важнейшими станут функции управления питанием и вопросы стандартизации (передачи данных, крепления, диагностики, эксплуатации). Согласно прогнозам Strategy Analitics, свыше 700 млн батарейных колесных датчиков будет продано в следующие 5 лет, вслед за чем можно ожидать переход и к безбатарейным системам.
Обзор, представленный в статье, показывает, что высокоинтегрированных датчиков на автомобильном рынке уже несколько, среди которых серия сенсорных устройств MPXY8300 Freescale для TPMS предлагает широчайший спектр признаков, востребованных и в батарейных, и в безбатарейных системах.
Литература
- Tire Pressure Monitoring System FMVSS No. 138.
- http://www.nhtsa.dot.gov/cars/rules/rulings/TirePresFinal/TPMSfinalrule.pdf
- Shaw Mark L. Integrating Freescale’s Advanced Tire Pressure Monitoring System (TPMS) Solution into the Automobile. Freescale Semiconductor, Inc. 2007.
- Day J. Auto Industry Strives for Tire Pressure Monitor Standard. Autoelectronics, Oct 1, 2004. http://autoelectronics.com/mag/410WAEF3.pdf
- A Smart Tire Pressure Monitoring System. Mnif K., Motorola Semiconductor, Sensor Products Division. Sensors, Nov. 2001. www.sensorsmag.com
- Сысоева С. Автомобильные акселерометры. Часть 2. Автомобильные акселерометры — ключевые фигуры систем безопасности и комфорта // Компоненты и технологии. 2005. № 9.
- Tire Pressure Monitoring: An Industry Under Pressure. Jeff Burgess, Motorola Inc. Sensors Magazine, July 2003. www.sensorsmag.com/articles/0703/29
- Christensen C., Branquart H. AMIS. Wireless ASICs bring tire pressure monitoring to the mass market. Automotive Design Line, 2006. http://www.automotivedesignline.com, http://i.cmpnet.com/automotivedesignline/2006/07/
- Сысоева С. Топ-предложения ИС и модулей датчиков для систем активной безопасности автомобилей // Chip News. 2007. № 5.