Особенности сборки транзисторов в корпусе D-PAK
Особенности корпуса D-Pak
При сборке транзисторов в пластмассовом корпусе D-Pak для поверхностного монтажа с повышенной мощностью рассеивания (discrete power device package) применяют посадку кристалла с помощью припойной прокладки. Для обеспечения заданной мощности Рmах ≤ 45 Вт и низкого переходного теплового сопротивления р-n-переход-корпус в качестве кристаллодержателя и теплоотвода применяют медные сплавы с теплопроводностью не хуже 350 Вт/м·°С [1]. Однако использование в составе корпуса транзистора материалов, не совместимых по величине коэффициента теплового линейного расширения (КТЛР), приводит к необходимости ограничения тепловых воздействий в процессе монтажа, что и отражается в технических условиях на изделия. Различные технологии пайки поверхностного монтажа—волновая, ИК-нагревом—в паровой фазе связаны с интенсивным нагревом тонкого пластмассового корпуса. При высоких тепловых нагрузках возникает опасность растрескивания корпуса и кристалла, возможность последующего проникновения влаги внутрь корпуса и деградации характеристик транзистора [2].
Корпуса транзисторов для поверхностного монтажа (D-Pak) относятся к XIV группе по ГОСТ 20.39.405-84, и к ним предъявляются жесткие требования по воздействию режимов пайки и паяемости выводов:
- Конструкция изделий должна обеспечивать трехкратное воздействие групповой пайки и лужения выводов горячим способом без теплоотвода при температуре пайки не выше 265 °С в течение 4 с.
- Изделия должны выдерживать групповую пайку одноразовым погружением корпуса в расплавленный припой (волну припоя) при температуре до 265 °С в течение до 4 с.
- Выводы и контактные площадки изделий должны иметь гарантированную паяемость с использованием спиртоканифольных неактивированных и некоррозионных слабоактивированных флюсов.
Методы монтажа кристаллов на выводные рамки — пайкой эвтектическими сплавами или легкоплавкими припоями, приклеиванием, посадкой на токопроводящую композицию — должны обеспечить высокую прочность соединений при термоциклировании и механических нагрузках, низкое электрическое и тепловое сопротивление, минимальное механическое воздействие на кристалл и отсутствие загрязнений.
Если кристаллы приборов имеют значительную мощность рассеяния (более 0,5 Вт), то между подложкой кристалла и посадочной площадкой выводной рамки необходимо создать токопроводящий электрический контакт с незначительным электрическим и тепловым сопротивлением, что достигается использованием методов пайки. Для тех приборов, в которых мощность рассеяния кристалла невелика, а электрическое сопротивление между подложкой кристалла и рамкой незначительно влияет на работу прибора, кристалл приклеивают на токопроводящую композицию [3].
Помимо технологических трудностей посадка кристалла на эвтектические сплавы (высокие температуры, золотое покрытие) имеет и другие недостатки. Ввиду малой пластичности эвтектики Au-Si и разницы в коэффициентах термического расширения кристалла и рамки в напаянном кристалле возникают значительные механические напряжения, что приводит к сколам кристаллов при пайке, последующих технологических операциях и механических испытаниях, а также к снижению надежности приборов.
Внутренние напряжения, возникающие в процессе присоединения кристалла к подложке, определяются не только физическими параметрами соединяемых материалов, температурой процесса, но и соотношением толщины кристалла к толщине подложки. Напряжения сжатия на поверхности кристалла рассчитывались как [4]:
а напряжения растяжения:
где Е — модуль упругости кремния, α1, α2 — КЛТР кремния и кристаллодержателя, Δt — перегрев кристалла, F — функция, зависящая от соотношения и толщины кристалла h1 и кристаллодержателя h2.
Расчеты показали, что при монтаже кремниевых кристаллов на основание из медного сплава возникают внутренние напряжения, которые могут превышать допустимый уровень напряжения изгиба кремния (250 МПа), в результате чего возникают микротрещины в кристалле. Выбор оптимальной толщины кристалла в пределах 200–250 мкм при h1/h2 = 0,4–0,5 позволяет уменьшить возникающие деформации (рис. 1).
Для установления влияния различия КТЛР кремниевого кристалла и кристаллодержателя из медного сплава БрХ исследовались транзисторные структуры размером 2,7×2,7×0,3 мм с напыленной на непланарную сторону системой металлизации Ti-Ni-Sn-PbSn-Sn. Оптимальное соотношение компонентов системы металлизации и припоя выбрано с учетом температуры присоединения внутренних проволочных соединений методом термозвуковой сварки золотой проволокой при 250 °С. Этому условию в соответствии с диаграммой состояния Pb-Sn отвечает композиция, содержащая 85% свинца. Трехслойная композиция Sn-SnPb-Sn выбрана как наиболее эффективная система, обеспечивающая смачивание припоем поверхности никеля на непланарной стороне кристалла и серебра на кристаллодержателе. Толщина слоя олова составляет 2 мкм со стороны никеля и 1 мкм на наружной поверхности. Расчетное значение толщины свинца:
где h1, h1 — толщина слоя Sn и Pb соответственно; γ1, γ2 — уд. вес Sn и Pb соответственно; А — требуемое содержание Pb в припое.
Уменьшение толщины слоя Sn до 2 мкм приводит к снижению толщины слоя Pb до 7,2 мкм, таким образом, варьирование толщиной слоев Sn в пределах 2–3 мкм и Pb в пределах 7,2–10,8 мкм позволило получить припойную композицию с температурой плавления 250–270 °С. С учетом допуска ±0,5 мкм толщина Sn составила: 1-й слой — 1,5 мкм, 2-й слой — 0,5 мкм, толщина слоя Pb — 7,2–10,8 мкм, а общая толщина припоя 9,2–13,8 мкм.
Исследовано влияние конструктивных и технологических факторов (толщина паяного соединения кристалл-кристаллодержатель; наличие демпфера между кристаллом и пластмассовой частью корпуса в виде эластичного компаунда; режимы зачистки облоя на теплоотводящей поверхности кристаллодержателя) на устойчивость транзисторов с Рmах = 30 Вт в корпусе D-Pak к значительным температурным ударам, возникающим в процессе поверхностного монтажа.
Монтаж кристаллов вибрационной пайкой
Металлизация Ti-Ni осаждалась в установке 01НИ-7-015 непрерывного действия с магнетронной системой распыления. Использованы мишени из никеля марки Н-0 по ГОСТ 849-70, титана ВТ1-0 толщиной листа 6–10 мм по ГОСТ 22178-78. Режимы напыления: давление в камере не более 6,7×10–5 Па; ток нагрева 3,5 А; мощность магнетрона напыления титана 2 кВт; напыления никеля 3 кВт; скорость конвейера 100 мм/мин.
После формирования системы Ti-Ni осаждалась припойная композиция в установке электронно-лучевого испарения в вакууме «Оратория-9» в последовательности Sn-PbSn-Sn при следующих режимах: температура напыления 280 °С; напряжение 6 кВ; ток эмиссии 0,5 А; время напыления Sn1: 120–240 c; PbSn: 400–600 с; Sn2: 120–240 c.
Изготовленные таким образом транзисторные структуры поступали на сборку после соответствующего контроля по электрическим параметрам и внешнему виду. Для сборки транзисторов применялась выводная рамка из материала БрХ с полосой серебра толщиной 7±1 мкм. Монтаж транзисторных структур на легкоплавкую припойную композицию выполнялся на автомате ЭМ4085-03 при следующих технологических режимах: температура 300–400 °С; амплитуда колебаний кристалла 25–200 мкм; количество периодов колебаний 2–10 [5].
Качество монтажа кристаллов определялось по внешнему виду до и после воздействия разрушающей нагрузки, прикладываемой перпендикулярно боковой поверхности кристалла. При этом пайка считалась удовлетворительной, если разрушение происходило по кремнию и не менее чем 80% площади кристалла занято кремнием [6]. Это требование подтверждалось и результатами контроля переходного теплового сопротивления p-n-переход-корпус (RТПК), выполненного с использованием специального зондового устройства.
Активация процесса монтажа кристаллов за счет принудительного вибрационного воздействия при амплитудах 25–50 мкм не оказывает положительного результата. Это вызвано тем, что при малых амплитудах вибрации, в условиях выполнения процесса монтажа без применения защитной атмосферы не происходит полного удаления окислов из зоны монтажа и образуются участки с непропаями, приводящими к росту теплового сопротивления. Это особенно заметно в случае пайки кристаллов при температурах до 300 °С (рис. 2). Увеличение температуры монтажа кристаллов до 390 °С, а амплитуды колебаний до 75–150 мкм способствует эффективному удалению окислов из зоны монтажа, при этом исключаются пустоты и непропаи под кристаллом, что и позволяет получить требуемый уровень переходного теплового сопротивления. Это имеет существенное значение для мощных транзисторов.
Монтаж кристаллов на легкоплавкий припой вибрационной пайкой на автомате ЭМ4085 приводит к гомогенизации паяного соединения, исключению дефектов в виде пустот и непропаев. В результате снижается уровень термомеханических напряжений в активной структуре, уменьшается переходное тепловое сопротивление, повышается производительность монтажа [7].
При сборке транзисторов опробован вариант с увеличенной толщиной паяного соединения за счет использования дополнительной прокладки припоя ПОС-10 толщиной 50 мкм. Нанесение эластичного демпфирующего слоя компаунда СИЭЛ 159-322Б на поверхность кристалла после формирования проволочных перемычек выполнялось на автомате ЭМ4085 с применением стандартного дозатора. После выполнения каждой технологической операции проводился контроль кристаллов по внешнему виду на наличие трещин.
После герметизации на рамках осуществлялось удаление перемычек микрофрезой и освобождение эмиттерного и базового выводов от связующей кромки рамки, с последующим контролем ВАХ каждого прибора после каждой операции. В результате последовательного операционного анализа установлено, что трещины в кристалле возникают в процессе герметизации. Анализ характерного расположения трещин на кристалле (рис. 3) указывает на то, что растрескиваниекристаллов происходит при герметизации в процессе смыкания пресс-формы на отдельных гнездах матрицы из-за несоответствия величины перепада на формованной части рамки и матрицы пресс-формы. При глубине формовки коллекторного вывода 1±0,07 мм на рамке фактическое несоответствие глубины перепада на элементах матрицы прессформы достигает Δmax = 0,25 мм. Это приводит к тому, что в процессе смыкания верхней и нижней частей пресс-формы происходит деформация плоскости кристаллодержателя и пластическая деформация зоны пайки кристалла с последующим образованием трещины в кристалле.
Трещины в кристалле отсутствовали для вариантов сборки транзисторов с защитой кристалла эластичным демпфирующим слоем и с дополнительным демпфирующим слоем припоя. В обоих вариантах в результате уменьшения глубины перепада на элементах пресс-формы происходит снижение внутренних напряжений в кристалле и устраняются трещины в нем.
При герметизации корпуса пластмассой на теплоотводе образуется облой повышенной толщины, достигающей 40–50 мкм. Это создает значительные трудности по его удалению шлифовальным кругом на плоско-шлифовальном станке и может являться причиной возникновения дополнительных механических напряжений в кристалле. В процессе зачистки облоя необходимо исключать возможность грубого заглубления шлифовального круга вматериал выводной рамки. В этом случае происходит перегрев кристаллодержателя, что заметно по изменению его цвета, а механическая деформация поверхностного слоя, передаваемая в кристалл, приводит к возникновению механических напряжений, способных привести к его растрескиванию. Неоднократные эксперименты при различных режимах зачистки облоя шлифовальным кругом показали высокую эффективность применения дополнительного защитного эластичного компаунда, наносимого на поверхность кристалла.
В результате совершенствования конструктивно-технологического исполнения приборов и доработки пресс-форм были изготовлены контрольные партии приборов с последующим испытанием в условиях поверхностного монтажа на плату: полное погружение в припой при температуре 260±5 °С в течение 10 с. Гистограмма распределения приборов с различным конструктивно-технологическим исполнением по отказам в условиях поверхностного монтажа приведена на рис. 4. Для оптимального варианта конструктивно-технологического исполнения приборов брак не превышает 2%.
Заключение
Предложен оптимальный вариант конструктивно-технологического исполнения мощных транзисторов в корпусе D-Pak, предназначенных для поверхностного монтажа (толщина паяного соединения не менее 8 мкм, посадка кристалла на легкоплавкий припой вибрационной пайкой, защита кристалла эластичным компаундом, глубина формовки в пределах не хуже ±0,07 мм) и обладающих высокой надежностью в условиях температурных воздействий процессов групповой пайки.
- Advanced Electronic Packaging / Ed. by R.K. Ulrich, W.d. Brown. N.Y.: Wiley Interscience. 2006.
- Taraseiskey H. Power Hybrid Circuit Design and Manufacture. N.Y.: Marcel Dekker Inc. 1996.
- Whitaker J.C. Microelectronics. N.Y.: CRC. 2006.
- Omi S., Fujita K. Causes of cracks in SMD and type specific remedies // IEEE Trans.Comp. Hybrid, Manufacture Technology. 1991. № 14.
- Ануфриев Л. П., Керенцев А. Ф., Ланин В. Л., Иваш А.М. Автоматизированный монтаж кристаллов мощных транзисторов // Технология и конструирование в электронной аппаратуре. 2000. № 4.
- Ануфриев Л. П., Керенцев А. Ф., Ланин В. Л. Статистическое регулирование процесса монтажа кристаллов мощных транзисторов // Электроника и электротехника. Каунас: Технология. 2000. № 3 (26).
- Ануфриев Л. П., Керенцев А. Ф., Ланин В. Л. Электрические и тепловые параметры контактов при монтаже кристаллов в приборах силовой электроники // Электроника и электротехника. Каунас: Технология. 2002. № 1 (36).
- Ануфриев Л. П., Керенцев А. Ф., Ланин В. Л. Повышение устойчивости транзисторов в корпусе D-Pak к поверхностному монтажу // Электроника и электротехника. Каунас: Технология. 2003. № 7 (49).