Краткая история электричества, или Почему «умные дома» питаются постоянным током

№ 3’2015
PDF версия
В современных «умных домах» есть множество электрических помощников, работающих в фоновом режиме и делающих нашу жизнь еще более комфортной. Они включают сигнализацию, регулируют освещение и системы отопления и кондиционирования, блокируют двери гаража и открывают жалюзи на окнах, впуская дневной свет. Практически каждым электронным устройством и электронной системой в доме теперь можно управлять через смартфон или планшетный компьютер. И это только начало. В то время как наши дома по-прежнему подключены к сети переменного напряжения, вся домашняя электроника питается постоянным током. И скоро это будет относиться и к системам освещения! Краткая прогулка по истории электричества объяснит нам, почему именно переменный ток стал стандартом. Глядя в будущее, я хотел бы рассказать о множестве новых решений, которые ждут нас «прямо за углом».

Все началось в 1881 году на международной электротехнической выставке в Париже, где Томас Алва Эдисон представил всему миру свое новое изобретение — электрический свет, производимый лампой накаливания. В те времена сети постоянного тока были нормой. Чтобы сделать свой продукт коммерчески успешным, Эдисону пришлось решать сложнейшую проблему электрификации величайших городов того времени — Нью-Йорка, Лондона и Парижа.

Томас Эдисон работал с сетью 110 В DC. Из-за высокого падения напряжения при прохождении постоянного тока по проводам, энергия могла передаваться только на относительно небольшие расстояния. Это означало, что источники энергии следовало располагать прямо в центре города, поскольку каждая подстанция могла обслуживать здания в радиусе не более 1,5 км. Сегодня это трудно себе представить, однако такие электростанции действительно были построены во всех крупных городских центрах.

Очень быстро стало очевидным, что сети постоянного тока не могут обеспечивать разумные экономические показатели на менее застроенных территориях. Поэтому Джорджу Вестингаузу вскоре пришла в голову идея перевести передачу энергии на переменный ток, который имеет два серьезных преимущества: уровень АС-напряжения легко повысить с помощью трансформатора и для его передачи можно использовать более длинные и тонкие провода без существенных потерь мощности.

Эти изобретатели стали главными противниками в «войне токов», происходившей в начале 1890-х. В конце концов, Вестингауз взял верх, не в последнюю очередь благодаря помощи Николы Теслы — создателя многофазной асинхронной машины переменного тока. Вот почему у нас в домах все еще используется АС-сеть, в то время как миллиарды работающих во всем мире источников питания снабжают нашу домашнюю электронику постоянным током.

 

Возрождение постоянного тока?

Сможет ли экономичный «умный дом» будущего открыть новую эру постоянного тока? И станет ли DC-сеть снова привлекательной? Эти вопросы оказываются не настолько надуманными, как может показаться на первый взгляд. Давайте просто взглянем на солнце, которое дает нам энергию изо дня в день и при минимальных затратах. Таким образом, фотоэлектрические солнечные станции способны стать одними из самых популярных источников энергии для тех домовладельцев, которые хотят меньше зависеть от центральных сетей.

Однако оба эти основных источника энергии не всегда совместимы. Практически все наши здания подключены к сетям переменного тока. То есть энергию, получаемую от солнечных панелей, нельзя использовать без преобразования в стандартное АС-напряжение 230 В/50 Гц. Даже с учетом того, что эффективность современных инверторов превышает 95%, часть мощности все равно теряется.

Энергия солнечного света не всегда доступна, например в вечернее время, когда мы в ней особенно нуждаемся. Именно поэтому фотоэлектрические станции, как правило, работают на основную сеть. В недавнем прошлом это было очень выгодно, поскольку тарифы на электроэнергию искусственно поддерживались на высоком уровне. Во время нынешней рецессии государственная поддержка возобновляемых источников энергии постепенно уменьшается, и подключение солнечных панелей к питающей сети больше не является столь привлекательным решением, как было несколько лет назад.

Собственники фотоэлектрических станций, следовательно, должны пересмотреть систему электроснабжения зданий таким образом, чтобы использовать постоянный ток от солнечных батарей для своих собственных нужд. Это может быть сделано с помощью независимой сети постоянного тока для снабжения потребителей. Избыток энергии может запасаться в буферной батарее, обеспечивающей подачу энергии, когда солнечный свет отсутствует.

На рис. 1 показана структура домашней DC-сети, которая вскоре может стать стандартной для «умного дома». Внутренние источники постоянного тока обеспечивают энергией бытовую технику, систему освещения и элементы управления зданием. Идеальным считается питание от сети 24 В DC — такой уровень напряжения наиболее эффективен с учетом длины и сечения кабелей.

Внутренняя разводка сети постоянного тока

Рис. 1. Внутренняя разводка сети постоянного тока, генерируемого фотоэлектрической станцией (синяя цепь), буферной батареей и преобразователем электромобиля (центральная АС-сеть (красная цепь) подключена к наиболее мощным потребителям, она также служит в качестве резервного зарядного устройства для аккумулятора)

В тех случаях, когда солнечного света недостаточно для подзарядки аккумулятора, она может осуществляться от центральной сети 230 В AC. Следовательно, «умные дома» пока не могут полностью отказаться от использования этой цепи. К ней подключаются крупные бытовые приборы, такие как стиральные машины, холодильники, электрические плиты, а также водогрейные котлы и тепловые насосы, причем система управления отоплением может питаться от сети постоянного тока.

 

Много ли потребителей у постоянного тока?

Зачем мы вообще рассматриваем вопрос об использовании DC-сети? Разве не очевидно, что большинство электрических приборов в наших домах рассчитано на питание от сети переменного тока? Однако на самом деле это не совсем верно. У множества современных бытовых приборов основную мощность потребляют не электромоторы, а электронные компоненты. Как правило, они созданы с применением полупроводниковых технологий, поэтому рассчитаны на работу с постоянным током. Иными словами, в действительности АС-напряжение 230 В/50 Гц из нашей розетки преобразуется в напряжение 24, 12 или 5 В постоянного тока, которое затем подается на электронное устройство.

Стереосистемы, персональные компьютеры и другая оргтехника оснащены множеством источников питания, снабжающих различные внутренние узлы с определенным уровнем потребления постоянного тока.

Такой подход не является расточительным, поскольку, когда устройство находится в эксплуатации, эффективность источника питания, как правило, превышает 90%. Однако в режиме ожидания расход энергии оказывается неоправданно большим. И будем честными: большинство устройств в наших офисах и домах находится в режиме ожидания большую часть времени, потребляя энергию без какой-либо цели.

К счастью, такая ситуация в ближайшее время изменится благодаря новой Директиве Европейского союза по энергопотребляющим устройствам — EuP (Energy-using Products). В соответствии с этим документом с начала 2013 года электронные устройства в режиме ожидания не должны потреблять больше 500 мВт (для дисплеев: 1 Вт). Для удовлетворения требованиям директивы блок питания должен включать небольшой AC/DC-модуль и реле, как показано на рис. 2. Это единственный способ сократить энергопотребление в режиме ожидания ниже заданного предела.

Режим ожидания с применением маломощного AC/DC-модуля

Рис. 2. Режим ожидания с применением маломощного AC/DC-модуля для обеспечения минимального потребления энергии (например, RAC03, 80 мВт). Вход основного источника питания коммутируется через реле

Самые энергоемкие потребители энергии зачастую даже не очень заметны. Мы говорим сейчас о зарядных устройствах, которые в больших количествах обнаруживаются в наших домах и офисах. Обычно это простые и недорогие изделия, их типовая схема показана на рис. 3. Самой проблемной частью данного устройства с точки зрения потерь мощности является линейный регулятор напряжения (например, серии LM78). Применение этого узла снижает эффективность использования энергии до совершенно недопустимых величин: от 60 до 65%. Несмотря на то, что можно значительно повысить эффективность преобразования (>95%), установив импульсный регулятор напряжения (например, серии R-78), большинство производителей электроники не хочет тратить лишние деньги. Возникает вопрос: справедлив ли этот подход в отношении потребителей, которые в конечном счете получают более высокие счета за электроэнергию?

Зарядное устройство с энергоемким линейным регулятором

Рис. 3. Зарядное устройство с энергоемким линейным регулятором

С развитием LED-технологий системы освещения также становятся электронными устройствами, потребляющими постоянный ток. Однако светодиоды нельзя подключать непосредственно к DC-сети: для управления LED-лампой необходим специальный AC/DC-драйвер. Мощность домашних светодиодных светильников, как правило, находится в диапазоне 15-30 Вт (учитывая, что 25-Вт LED-лампа обеспечивает такой же уровень освещения, как лампа накаливания мощностью 100 Вт). Отметим, однако, что эффективность AC/DC LED-драйверов в этом диапазоне редко превышает 80%.

Данный пример показывает, что питание электронных устройств от источника переменного тока приводит к потере 15-20% потребляемой энергии. Использование домашней DC-сети позволяет устранить эти проблемы «одним ударом».

Если мы учтем мощность, рассеиваемую при преобразовании энергии солнечных панелей (минимум 5%), то общий уровень потерь увеличится примерно до четверти потребляемой мощности. Это явно не по карману потребителю во времена постоянно растущих расходов на электроэнергию.

 

Журавль в небе?

Можно подумать, что сети постоянного тока целесообразно использовать только в новых зданиях, поэтому их внедрение не оказывает большого влияния на общее энергопотребление. Однако, вероятно, имеет смысл прямо сейчас начать разработку и внедрение концепций, ориентированных на будущее, даже если они подходят не для всех нынешних потребителей?

Более того, уже есть решения, которые можно успешно интегрировать в существующие системы переменного тока. Хорошим примером является источник питания RAC03-SCR, разработанный компанией RECOM (рис. 4, слева). Благодаря компактному дисковому корпусу он встраивается

Плоский дисковый модуль RECOM

Рис. 4. Плоский дисковый модуль RECOM для установки в обычные розетки (слева) и комплект для монтажа модулей RAC01-RAC10 на универсальную DIN-рейку (справа)

в обычную розетку. Этот модуль с легкостью интегрируется даже в стандартный выключатель или гнездо розетки, что делает его идеальным для применения в экономичных источниках питания устройств управления настенными дисплеями электрических ставен, жалюзи и систем освещения. Блок RAC03-SCR также удобен для зарядки мобильных телефонов и других подобных устройств, поскольку он встраивается в настенный USB-коннектор.

Поскольку блоки управления часто устанавливаются в распределительные щитки, хорошим решением для данного случая является монтаж компактных источников питания на верхнюю DIN-рейку. Это легко сделать с помощью универсального DIN-адаптера (рис. 4, справа), разработанного RECOM для своих AC/DC-модулей. Существует возможность индивидуальной настройки таких блоков в диапазоне мощности от 1 до 10 Вт.

Эдисон был бы счастлив узнать, что его идеи переживают настоящий Ренессанс. Нет сомнения, что в ближайшем будущем самые «умные дома» будут получать энергию от возобновляемых источников постоянного тока. А сейчас почему бы не начать экономить энергию с помощью интеллектуальных новинок, таких как плоский модуль питания RECOM?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *