Подписка на новости

Опрос

Нужны ли комментарии к статьям? Комментировали бы вы?

Реклама

 

2008 №6

Три — это много для инструментальных усилителей

Холенарсипур Прашант


Инструментальные усилители на базе трех операционных усилителей (ОУ) в течение долгого времени были отраслевым стандартом в прецизионных схемах, где требуется высокий коэффициент усиления или коэффициент подавления синфазного сигнала. Однако этим усилителям свойственны серьезные ограничения при работе от шины питания с одним источником, что необходимо во многих современных приложениях. В данной статье рассматриваются ограничения обычной архитектуры инструментальных усилителей с тремя ОУ и описывается разработанная и запатентованная компанией Maxim архитектура с косвенной обратной связью по току, обеспечивающая определенные преимущества при питании инструментальных усилителей от одного источника. Подробный анализ подкрепляется лабораторными осциллограммами.

Применение инструментальных усилителей

Инструментальные усилители используются для усиления малых дифференциальных напряжений в присутствии больших синфазных напряжений, обеспечивая при этом высокий входной импеданс. Это свойство сделало их привлекательными для применения в различных схемах, таких как мостовые интерфейсы тензодатчиков для измерения давления и температуры, датчиков температуры на базе термопар и различных сильно- и слаботочных схем измерения тока.

Инструментальные усилители на базе трех ОУ

Классический инструментальный усилитель на базе трех ОУ (рис. 1) обеспечивает великолепное подавление синфазного сигнала и точную установку дифференциального коэффициента усиления посредством одного резистора. В основе данной архитектуры лежит двухкаскадная конфигурация: первый каскад обеспечивает единичное усиление синфазного сигнала и все (или почти все) дифференциальное усиление, а второй каскад обеспечивает единичное (или малое) дифференциальное усиление и все подавление синфазного сигнала (рис. 2).

Внутренняя архитектура семейства инструментальных усилителей MAX4194–MAX4197 на базе трех ОУ
Двухкаскадная схема усиления выходных сигналов, в которой входное синфазное напряжение передается на промежуточный каскад

Выходной сигнал большинства современных низковольтных усилителей имеет размах, равный напряжению питания (выход rail-to-rail), однако для входных сигналов это не обязательно так. Рассмотрим, тем не менее, работающий от одного источника питания (VCC) инструментальный усилитель на базе трех ОУ с чрезвычайно высоким коэффициентом усиления и входом и выходом rail-torail, аналогичный изображенному на рис. 1.

Чтобы VOUT1 и VOUT2 не достигали уровней шин питания, необходимо обеспечить выполнение следующего неравенства:

Зачастую в схемах устанавливается VREF = 0 (для однополярных входных сигналов) или VREF = VCC/2 (для биполярных входных сигналов).

При VREF = 0 неравенство принимает следующий вид:

При VREF = VCC/2 неравенство принимает следующий вид:

Следствия из этих соотношений лучше всего пояснить на графике (рис. 3).

Графики значений VCM при различных дифференциальных входных напряжениях для инструментального усилителя на базе трех ОУ

Серыми областями на рис. 3 обозначен диапазон синфазных входных напряжений (относительно дифференциальных входных напряжений), в котором выходы усилителей на рис. 1 (A1, A2) не будут насыщаться до уровней шин питания. Этот диапазон зависит от VOUT и VREF. Поскольку разность VOUT–VREF — это просто усиленное дифференциальное входное напряжение, допустимый диапазон синфазных входных напряжений меняется в зависимости от дифференциального входного напряжения.

На практике, разумеется, лучше всего по максимуму использовать усиление цепи, то есть максимальное выходное напряжение (VOUT) должно достигаться при максимальном расчетном дифференциальном напряжении на входе. Черными областями на рис. 4 обозначен диапазон синфазных входных напряжений, при которых инструментальный усилитель усиливает максимальное дифференциальное входное напряжение (то есть при максимальном дифференциальном входном напряжении), так что VOUT = 0 или VOUT = VCC.

Диапазон синфазных входных напряжений, в котором обычный инструментальный усилитель на базе трех ОУ дает максимальное выходное напряжение при

Как можно видеть, в обоих случаях синфазное входное напряжение существенно ограничено. В частности:

  • Если требуется полностью усилить однополярный дифференциальный входной сигнал (устанавливая VREF = 0 и получая диапазон выходных напряжений от 0 до VCC), наряду с сигналом должно присутствовать синфазное напряжение, равное 1/2VCC. При любом другом синфазном напряжении размах выходного напряжения не достигнет VCC (максимальное дифференциальное входное напряжение уменьшится). Для биполярных дифференциальных входных сигналов (VREF = 1/2VCC) соответствующий диапазон синфазных напряжений, в котором можно достичь размаха выходного напряжения от 0 до VCC, составляет всего от 1/4VCC до 3/4VCC.
  • В обоих случаях, если бы синфазное напряжение равнялось напряжению «земли» (0 В) или было близким к нему, то усилитель потерял бы способность усиливать дифференциальные напряжения. Поэтому, предполагая, что (желательные) дифференциальные входные напряжения не связаны с (нежелательными) синфазными входными напряжениями, можно заключить, что черные области представляют минимальные и максимальные расчетные значения VCM, при которых сохраняется весь диапазон VOUT. За пределами этой области некоторые сочетания VDIFF и VCM могут привести к недопустимым значениям VCM. Обратите внимание, что в случае, изображенном на рис. 4a, если требуется изменение VCM во всем диапазоне, допуск по синфазному входному напряжению равен нулю. Проще говоря, синфазные изменения входного сигнала недопустимы.

В силу вышесказанного инструментальные усилители на базе трех ОУ находят лишь ограниченное применение в системах с одним источником питания. В продолжение беседы нелишним будет ответить на два вопроса:

  1. Что произойдет, если внутренние усилители (A1 и A2) насытятся до уровней шин питания?
  2. Каковы следствия для архитектур с диапазоном входных напряжений, меньшим напряжения питания (не rail-to-rail)?

Эффекты насыщения входного усилителя

Рассмотрим случай, когда выход усилителя A1 насыщается до уровня «земли». Иными словами, VIN+ > VIN–, и синфазное напряжение находится в области, обозначенной как X на рис. 4 (VDIFF превышает допустимое на ширину серой области).

Поскольку A1 насыщен (VOUT1 = 0), он переходит в компараторный (нелинейный) режим работы, и напряжение на его инвертирующем входе более не будет обязательно равным напряжению на неинвертирующем входе (VIN–). Усилитель A2 в этом случае действует как неинвертирующий усилитель с коэффициентом усиления, равным 1+R1/(R1+RG) для напряжений на его неинвертирующем входе (VIN+). Для усилителя с высоким коэффициентом усиления RG << R1, и поэтому усилитель A2 действует просто как неинвертирующий усилитель с коэффициентом усиления 2:

Выходное напряжение дифференциального усилителя второго каскада A3 равняется просто разности входных напряжений VOUT1 и VOUT2:

Аналогичным образом, если A2 насыщается до уровня «земли»:

Этот режим работы потенциально опасен для инструментального усилителя на базе трех ОУ. Инструментальный усилитель не только прекращает усиливать дифференциальное входное напряжение, но к тому же вместо плавного ухудшения характеристик по некоторому закону начинает усиливать синфазное входное напряжение относительно дифференциального входного напряжения. Дело усугубляется еще тем, что синфазные напряжения обычно не контролируются и, скорее всего, являются нежелательным шумом, который искажает представляющие интерес сигналы. Это серьезная проблема, поскольку инструментальный усилитель используется главным образом как раз для того, чтобы устранить такой шум.

Следствия для архитектур с диапазоном входных напряжений, меньшим напряжения питания

Как уже отмечалось, большинство усилителей имеют выход rail-to-rail, но для входных сигналов это не так. Для прецизионных схем проектирование каскадов с входом rail-to-rail представляет особенно трудную задачу, поскольку переход от режима с синфазным напряжением в окрестности VCC к режиму с синфазным напряжением в окрестности напряжения «земли» не может быть идеальным: во время этого перехода между парами n- и p-типов в дифференциальном входном каскаде могут возникать напряжения смещения. Малое значение VOS и высокий коэффициент подавления синфазного сигнала (CMRR) — основные требования к правильно сконструированному прецизионному инструментальному усилителю. Поскольку CMRR = DVOS/DVCM, изменение VOS при изменении синфазного напряжения в переходной области значительно ухудшает номинальное значение CMRR.

Вследствие этого, у большинства прецизионных инструментальных усилителей диапазон входных напряжений обычно меньше напряжения питания, хотя напряжение отрицательной шины (0 В) все же входит в диапазон допустимых синфазных напряжений. Перестроив графики на рис. 3 с учетом рассмотренных ограничений на синфазное напряжение, можно получить графики для инструментального усилителя на базе трех ОУ, работающего от одного источника питания, с учетом входного каскада с диапазоном напряжений, меньшим напряжения питания (рис. 5).

Графики синфазных входных напряжений при различных дифференциальных входных напряжениях

Архитектура с косвенной обратной связью по току

Архитектура с косвенной обратной связью по току — новый подход к проектированию инструментальных усилителей, приобретший чрезвычайную популярность ввиду множества преимуществ. На рис. 6 показана реализация архитектуры с косвенной обратной связью по току в инструментальных усилителях MAX4462 и MAX4209.

Архитектура с косвенной обратной связью по току, используемая в инструментальных усилителях MAX4462 и MAX4209

Эта новая архитектура предусматривает усилитель с высоким коэффициентом усиления (C) и два усилителя тока, управляемых напряжением (A и B). Каждый из усилителей A и B преобразует входное дифференциальное напряжение в выходной ток и полностью подавляет синфазное входное напряжение. В стабильной рабочей точке усилителя выходной ток gM-каскада A равен входному току gM-каскада B. Это равенство обеспечивается обратной связью через усилитель C, которая принудительно обеспечивает равенство дифференциального напряжения на входе усилителя обратной связи B дифференциальному напряжению на входах усилителя A. Схема устанавливает определенное значение тока в цепочке выходных резисторов (равное VDIFF/R1). Этот ток также протекает через R2. Поэтому выходное напряжение на выводе OUT — это не что иное, как усиленное дифференциальное входное напряжение (G = 1+R2/R1). Далее на выходе можно установить смещение, подав произвольное опорное напряжение на вход REF, как в стандартном инструментальном усилителе с тремя ОУ.

Изобразив принцип действия компонента на блок-схеме (рис. 7) и сравнив результат с рис. 2, можно увидеть ключевое преимущество. Промежуточный сигнал в инструментальном усилителе на базе трех ОУ содержит не только усиленное дифференциальное напряжение, но и синфазное входное напряжение. В отличие от этого, в архитектуре с косвенной обратной связью по току содержится только представление дифференциального входного напряжения с небольшой задержкой. Первый каскад обеспечивает все подавление синфазного сигнала. Второй каскад обеспечивает все дифференциальное усиление и увеличивает подавление синфазного напряжения, позволяя при необходимости сместить выход на величину опорного напряжения. В итоге ограничения на синфазное входное напряжение, свойственные инструментальным усилителям на базе трех ОУ, отсутствуют как таковые в архитектуре с косвенной обратной связью по току.

Схема инструментального усилителя с косвенной обратной связью по току, в которой отсутствует синфазное напряжение на выходе первого каскада

С учетом ограничений на величину синфазного входного напряжения (для входного каскада с диапазоном напряжений, меньшим напряжения питания) переходные характеристики приобретают вид, похожий на графики рис. 8. Черными областями обозначен расчетный диапазон синфазных входных напряжений, в котором доступен весь диапазон выходных напряжений. Серые области представляют диапазон синфазных входных напряжений, в котором инструментальный усилитель работает так, как ожидается: напряжение на его выходе пропорционально дифференциальному входному напряжению, а синфазное входное напряжение полностью подавляется. Черная область, содержащаяся в серой области, обозначает пределы, в которых доступен весь диапазон выходных напряжений.

Графики полезного диапазона синфазных входных напряжений для инструментального усилителя с косвенной обратной связью по току

Экспериментальные данные

Приведенные ниже результаты экспериментов подкрепляют сделанные выводы о косвенной обратной связи по току. Рассмотрим интегральные схемы MAX4197 и MAX4209H. Обе они представляют собой инструментальные усилители с коэффициентом усиления 100. MAX4197 имеет архитектуру с тремя ОУ, а MAX4209H — архитектуру с косвенной обратной связью по току. Обе схемы имеют VCC = 5 В и VREF = 2,5 В для смещения нулевого выхода устройства.

В данном эксперименте на вход инструментального усилителя подаются сигналы двух типов.

В случае 1 используется дифференциальное напряжение частотой 1 кГц в присутствии высокого синфазного напряжения частотой 100 Гц. Ожидается, что на выходе инструментального усилителя будет присутствовать только сигнал частотой 1 кГц и не будет составляющих частотой 100 Гц. Входные сигналы можно аппроксимировать следующим образом:

  • VIN+ — синусоидальный сигнал с размахом 2 В, частотой 100 Гц и смещением 1 В;
  • (VIN+–VIN–) — синусоидальный сигнал с размахом 30 мВ, частотой 1 кГц и нулевым смещением.

В случае 2 используется дифференциальное напряжение частотой 100 Гц в присутствии высокого синфазного напряжения частотой 1 кГц. Ожидается, что на выходе инструментального усилителя будет присутствовать только сигнал частотой 100 Гц и не будет составляющих сигнала частотой 1 кГц. Входные сигналы можно аппроксимировать следующим образом:

  • VIN+ — синусоидальный сигнал с размахом 2 В, частотой 1 кГц и смещением 1 В;
  • (VIN+–VIN–) — синусоидальный сигнал с размахом 30 мВ, частотой 100 Гц и нулевым смещением.

Приведем результаты. (Канал 1 — VIN+, канал 2 — VIN–, канал 3 — выходное напряжение инструментального усилителя.)

Результаты для случая 1

На рис. 9a MAX4209H демонстрирует ожидаемый результат. MAX4197 дает ожидаемый результат только в том случае, если синфазное напряжение значительно превышает напряжение «земли» (рис. 9б). Составляющая сигнала частотой 100 Гц явственно присутствует в выходном напряжении MAX4197.

Экспериментальные данные для случая 1

Примечание. Обратите внимание, что составляющая VDIFF частотой 1 кГц слишком мала, чтобы быть заметной на осциллограммах каналов 1 и 2, а VCM частотой 100 Гц преобладает.

Результаты для случая 2

Опять-таки, MAX4209H демонстрирует ожидаемые результаты (рис. 10a). MAX4197 усиливает дифференциальный входной сигнал только в том случае, если синфазное напряжение значительно превышает напряжение «земли» (рис. 10б). Когда синфазное напряжение близко к напряжению «земли», оно присутствует на выходе инструментального усилителя в инвертированном или даже просто в буферизованном виде в зависимости от того, какой из усилителей A1 и A2 насыщается (как объяснялось ранее).

Экспериментальные данные для случая 2

Примечание. Обратите внимание на составляющую VCM (как и на рис. 9) частотой 1 кГц, пробивающуюся поверх желательного выходного напряжения в инструментальных усилителях на базе трех ОУ. Архитектура с косвенной обратной связью по току сохраняет свои великолепные характеристики.

Заключение

Сегодня, в эпоху высокопроизводительной электронной техники потребители требуют не только большей производительности, но и более рациональных схем управления питанием, обеспечивающих более длительное время автономной работы и более экономное расходование энергии. В настоящее время уже идет переход к питанию аналоговых схем одним уровнем напряжения, что меняет способы проектирования и применения электронных устройств. Новаторские архитектуры, такие как архитектура с косвенной обратной связью по току, описанная в настоящей статье, превращают вчерашние мечты в сегодняшнюю реальность.

Для получения дополнительной информации обращайтесь к официальным дистрибьюторам компании Maxim в России — www.maxim-ic.ru/contact.

Скачать статью в формате PDF  Скачать статью Компоненты и технологии PDF

 


Сообщить об ошибке