Подписка на новости

Опрос

Нужны ли комментарии к статьям? Комментировали бы вы?

Реклама

 

2006 №7

Некоторые применения линейных интегральных датчиков Холла компании Allegro Microsystems

Полищук Александр


Интегральные датчики Холла находят применение во многих областях современной промышленности, например в машиностроении, автомобильной электронике, авиационной технике. В отличие от механических и оптических датчиков, датчики Холла обладают важным преимуществом — они практически нечувствительны к механическим воздействиям и изменению параметров окружающей среды, при этом обеспечивают минимизацию стоимости готового решения.

Введение

Наибольшее распространение получили так называемые ключевые датчики Холла — микросхемы, выход которых меняет логическое состояние при превышении напряженностью магнитного поля определенной величины. Такие датчики применяются, в частности, для измерения частоты вращения и величины перемещения движущихся объектов — валов электродвигателей, зубчатых колес редукторов, транспортерных лент и т. п. Однако существует отдельный класс интегральных микросхем с элементом Холла, позволяющий значительно расширить область применения либо дать разработчику большую гибкость при построении системы в традиционных областях применения. Речь идет о так называемых линейных датчиках Холла. В данной статье мы рассмотрим основные характеристики и области применения этих устройств.

Структура и основные характеристики линейных датчиков Холла

Линейные датчики Холла (ЛДХ) обычно оптимизируют для измерения величины униполярного или биполярного магнитного поля. ЛДХ характеризуются двумя основными параметрами — чувствительностью и линейностью в заданном диапазоне рабочих температур.

Рис. 1
Рис. 1

Типовая передаточная характеристика ЛДХ (зависимость выходного напряжения от амплитуды магнитного поля) показана на рис. 1. Большинство датчиков с однополярным питанием имеют выходное напряжение нуля (соответствующее нулевой напряженности магнитного поля), равное половине диапазона изменения выходного напряжения или половине напряжения питания. В последнем случае величина напряжения нуля и чувствительность зависят от величины напряжения питания. Это наблюдается в датчиках с пропорциональным выходом, представляющих собой элемент Холла с линейным усилителем (рис. 2). Так, у популярного датчика A3515 при напряжении питания +5,0 В напряжение нуля и чувствительность равны 2,5 В и 5,0 мВ/Гаусс соответственно, а при увеличении питания до 5,5 В данные параметры изменяются до значений 2,75 В и 5,5 мВ/Гаусс. Вот почему при использовании ЛДХ этого типа необходимо предъявлять более жесткие требования к источнику питания. В то же время датчики позволяют осуществить простую регулировку чувствительности без дополнительных усилительных компонентов, что может быть весьма полезно.

Рис. 2
Рис. 2

Современные ЛДХ представляют собой монолитную интегральную схему, где на одном кристалле объединены элемент Холла, линейный усилитель и оконечный каскад усиления мощности класса А (рис. 3). Кроме того, для увеличения точности преобразования и обеспечения температурной стабильности в микросхеме реализована система автоматической коррекции напряжения смещения и фильтрация сигнала после линейного усилителя.

Рис. 3
Рис. 3
Таблица 1. Номенклатура новых линейных датчиков Холла компании Allegro Microsystems
Таблица 1. Номенклатура новых линейных датчиков Холла компании Allegro Microsystems

В таблице 1 приведена номенклатура новых линейных датчиков Холла компании Allegro Microsystems. Датчики А1301, А1302 имеют схему, показанную на рис. 3. Они обеспечивают невысокое значение точности и могут использоваться, например, в системах регистрации угловых или линейных перемещений объектов. На показатели точности и стабильности характеристик ЛДХ с одним элементом Холла может оказывать влияние множество факторов: дисбаланс градиентов сопротивления в зависимости от направления тока, геометрическая неоднородность, пьезорезистивные эффекты и даже внешние механические воздействия на корпус микросхемы. Для устранения влияния указанных факторов на точность ЛДХ используется схема динамической квадратурной компенсации смещения. Принцип ее работы иллюстрирует рис. 4. Токи элемента Холла с двух направлений (0° и 90°) поочередно коммутируются с частотой около 200 кГц на входы дифференциального усилителя, осуществляя «электронный поворот» элемента на 90°. При этом к моменту «поворота» схема выборки-хранения фиксирует напряжение на выходе усилителя, устраняя коммутационные помехи. Окончательно сигнал пропускается через ФНЧ для полного восстановления. Схемотехника динамической квадратурной компенсации позволяет практически полностью устранить влияние внешних дестабилизирующих факторов, а также добиться высокой стабильности выходного напряжения смещения. К недостаткам схемы можно отнести наличие в спектре выходного сигнала шумов в полосе частот коммутации Fком, что ограничивает максимальную частоту выходного сигнала датчика величиной, обычно равной 0,1–0,2 Fком.

Рис. 4
Рис. 4

Описанный принцип компенсации смещения используется в датчиках А1321–А1323 (рис. 5). Эти изделия относятся к классу прецизионных калиброванных ЛДХ и сохраняют высокую точность и линейность преобразования в температурном диапазоне от –40 до +150 °С. Однако, как отмечалось выше, схемотехника динамической компенсации смещения приводит к увеличению шума на выходе датчика. Так, если у линейных датчиков А1301, А1302 амплитуда выходных шумов в полосе 10 кГц не превышает 150 мкВ, то у А1321–А1323 это значение оказывается уже на два порядка выше — около 25 мВ. Соответственно, при одинаковом коэффициенте преобразования 2,5 мВ/Гаусс разрешение по минимальной регистрируемой величине магнитного поля у А1301 составляет 0,06 Гаусс, а у А1323 — 10 Гаусс.

Рис. 5
Рис. 5

Использование регулировки напряжения питания для масштабирования коэффициента преобразования ЛДХ приводит к ряду сложностей при проектировании схемы. Во-первых, резко возрастают требования к стабильности напряжения источника питания. Во-вторых, пульсации и шумы питающего напряжения непосредственно модулируют выходной сигнал датчика, оказывая влияние на точность измерения, что требует применения сложной фильтрации, а значит, намного удорожает схему. От подобных недостатков свободны датчики нового поколения А1391, А1392 (рис. 6). Эти микросхемы имеют отдельный вход образцового напряжения масштабирования VREF, с помощью которого можно задать любое значение уровня нуля и коэффициента преобразования. При этом схема обеспечивает глубину подавления помех по напряжению питания около 60 дБ. Стабилизация смещения выполнена аналогично А1321–А1323, однако амплитуда шумов снижена на 20%.

Рис. 6
Рис. 6

В датчиках А1391 и А1392 реализован режим электронного отключения по входу SLEEP. При подаче на этот вход логического нуля микросхема переходит в режим пониженного энергопотребления (менее 25 мкА), а выход датчика переходит в третье состояние с высоким импедансом. Это позволяет объединять группы датчиков параллельно по выходам и использовать единый АЦП без встроенного мультиплексора (рис. 7). Опрос датчиков может осуществляться внешним микропроцессором выдачей сигнала логической единицы на вход SLEEP соответствующей микросхемы.

Рис. 7
Рис. 7

Применение ЛДХ

Среди областей применения линейных датчиков Холла следует выделить две наиболее распространенные. Это устройства измерения линейного или углового перемещения и измерения электрического тока.

Измерение линейного или углового перемещения

В большинстве применений для измерения перемещения объектов ЛДХ используют совместно с постоянными магнитами. Это обусловлено тем, что для поддержания максимальной линейности необходимо обеспечить большую величину изменения магнитного поля при изменении расстояния между ЛДХ и опорной точкой на перемещающемся объекте. Постоянный магнит необходимо выбирать с возможно большей напряженностью поля, например SaCo или AlNiCo.

Существует несколько вариантов взаимного расположения постоянного магнита и ЛДХ в системах измерений перемещений объектов. Наиболее простой способ — линейное расположение ЛДХ и магнита на одной оси так, чтобы силовые линии магнитного поля пересекали датчик под углом 90°. При таком расположении существует сильно нелинейная зависимость между выходным напряжением ЛДХ и расстоянием между ним и магнитом (рис. 8). При относительно небольших перемещениях отклонение от линейности невелико и можно не прибегать к дополнительной линеаризации. В противном случае необходимо использовать дополнительную схему линеаризации характеристики расстояние — напряжение.

Рис. 8
Рис. 8

Второй вариант — расположение ЛДХ и магнита в параллельных плоскостях. При такой ориентации система имеет точку нулевого поля, что позволяет получать дополнительную информацию о направлении перемещения по знаку выходного напряжения (например, вправо — увеличение напряжения, влево — уменьшение (рис. 9)). Как видно из рис. 9, центральная область относительно точки нулевого перемещения имеет высокую линейность, что с успехом может быть использовано в таких применениях, как потенциометры, воздушные корректоры (пневматические клапаны), датчики положения дроссельных заслонок и т. п. Кстати, в данном варианте, благодаря большой амплитуде изменения напряженности магнитного поля около нулевой точки, выходное напряжение ЛДХ тоже имеет большой размах, что упрощает последующую обработку сигнала.

Рис. 9
Рис. 9

Третий вариант — расположение ЛДХ между двумя комплементарно установленными магнитами (рис. 10). Комплементарные поля системы двух магнитов обеспечивают хорошую линейность с высокой крутизной характеристики. Эта система также располагает точкой нулевого перемещения, что позволяет иметь информацию о направлении перемещения. Недостатком описанного варианта является достаточно небольшой диапазон перемещений в такой системе, что ограничивает область ее применения.

Рис. 10
Рис. 10

Большинство рассмотренных вариантов в той или иной степени требуют линеаризации зависимости выходного сигнала от расстояния. Это можно реализовать с помощью АЦП и микроконтроллера, если в разрабатываемом устройстве предусмотрено последующее цифровое управление. Если же в результате требуется получить аналоговый сигнал, линейно зависящий от расстояния, процесс линеаризации может быть легко реализован с помощью программируемой аналоговой интегральной схемы (ПАИС) Anadigm [1]. При этом достаточно один раз снять экспериментальную зависимость функции преобразования и занести ее в виде таблицы коэффициентов в среду разработки. Кроме линеаризации, в ПАИС можно при необходимости реализовать и дополнительную обработку сигнала (усиление, фильтрацию, детектирование нуля и т. п.).

Измерение электрического тока

Существует большое количество методов измерения тока, но только три из них нашли широкое применение в производстве массовой продукции. Это резистивный метод, трансформаторные датчики и датчики тока на эффекте Холла. Резистивный метод — самый простой и экономичный, но имеет существенные недостатки, среди которых — большие потери мощности на резисторе и отсутствие гальванической развязки измерительной и измеряемой цепей. Кроме того, проволочные резисторы обладают значительной индуктивностью, что не позволяет использовать их в схемах измерения импульсных и ВЧ-токов. Применение мощных безындукционных толстопленочных резисторов сводит экономический эффект данного метода к нулю. Использование трансформаторов тока — намного более дорогое решение, к тому же возможное только при измерении переменного тока в ограниченной полосе частот.

Датчики тока на эффекте Холла занимают промежуточное положение по цене между рассмотренными выше типами. Их основные преимущества — отсутствие потерь проводимости и возможность измерения как постоянного, так и переменного тока. Помимо того элемент Холла изолирован от токовой цепи, что автоматически обеспечивает гальваническую развязку. Необходимость внешнего питания нельзя назвать существенным недостатком, так как в подавляющем большинстве случаев датчик не является оконечным устройством и после него все равно находятся другие компоненты схемы, также требующие электропитания.

Поскольку диапазон измеряемых ЛДХ значений индукции магнитного поля ограничен, при выборе конструкции необходимо правильно определить конфигурацию магнитной цепи датчика. Напряженность поля, создаваемая источником тока, должна соответствовать диапазону измерения ЛДХ.

При измерении тока от нескольких десятков до тысяч ампер датчик Холла может находиться вблизи проводника, без использования дополнительного магнитопровода. Для существующих типов датчиков оптимальной можно считать величину индукции магнитного поля около 100 Гаусс в середине диапазона измерений. Это обеспечит приемлемую чувствительность датчика по уровню выходных шумов. Индукция магнитного поля, создаваемая проводником с током, может быть оценена по известной формуле (в системе СИ):

(1)

где r — расстояние между центрами проводника и микросхемы датчика Холла (рис. 11). При выборе положения ЛДХ относительно проводника необходимо учитывать, что наибольшая чувствительность достигается при пересечении линиями магнитного поля плоскости датчика под прямым углом. Данный метод обладает тем недостатком, что любой внешний источник магнитного поля будет влиять на показания датчика тока.

Рис. 11
Рис. 11

Повысить чувствительность и снизить внешние влияния позволяет тороидальный магнитопровод с зазором, в котором установлена микросхема прецизионного калиброванного ЛДХ типа А1321–А1323 (рис. 12). При этом все поле сосредоточено в зазоре и внешнее влияние практически отсутствует. Индукцию в зазоре можно оценить по соотношению:

(2)
Рис. 12
Рис. 12

Описанный принцип измерения тока реализован в модульных датчиках компании Allegro Microsystems семейства ACS (рис. 13, таблица 2).

Таблица 2. Характеристики модульных датчиков компании Allegro Microsystems семейства ACS
Таблица 2. Характеристики модульных датчиков компании Allegro Microsystems семейства ACS
Рис. 13
Рис. 13

Конструкция, показанная на рис. 12, не позволяет измерять малые значения токов. Это связано с ограничением чувствительности ЛДХ по выходному шуму. Так, при использовании микросхемы А1323 разрешение по магнитной индукции, ограниченное шумами в полосе 10 кГц, составляет 10 Гаусс, или около 1,5 А. Существует два выхода: либо использовать ЛДХ с линейным некомпенсированным усилителем, либо применить многовитковую конструкцию (рис. 14). В первом случае, как было показано выше, чувствительность возрастет до 0,06 Гаусс, или около 10 мА. Для обеспечения такой чувствительности в многовитковой конструкции потребуется намотать более 150 витков, что приводит к резкому увеличению индуктивности и может оказаться неприемлемым. Поэтому в каждом конкретном случае приходится идти на компромисс между разрешением датчика и полосой частот. Например, ограничение полосы частот с помощью простейшего RC ФНЧ на выходе ЛДХ А1323 до 1 кГц позволит увеличить разрешение до 0,1 А.

Рис. 14
Рис. 14

Заключение

Мы рассмотрели два наиболее популярных применения ЛДХ, позволяющих значительно упростить решение широкого круга задач при проектировании аппаратуры систем автоматического регулирования, электропитания и преобразовательной техники. Надеемся, что этот материал будет полезен разработчикам при выборе того или иного технического решения.

Литература

  1. Цикл статей, посвященный программируемым аналоговым интегральным схемам Anadigm // Компоненты и технологии. 2005. № 1–9.

Скачать статью в формате PDF  Скачать статью Компоненты и технологии PDF

 


Другие статьи по данной теме:

Сообщить об ошибке